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Preface 
 
The Los Alamos National Laboratory Space Weather Summer School, with support from 
the Institute of Geophysics and Planetary Physics, the Center for Information Science 
and Technology, the Laboratory Directed Research and Development office, and the 
Principle Associate Directorate for Science, Technology, and Engineering, held its 
inaugural session in the summer of 2011. The summer school returned for a second 
session, hosting a new class of seven students from various U.S. research institutions 
from June 4th – July 27th, 2012. The summer school format includes a series of structured 
didactic lectures as well as mentored research and practicum opportunities. Lecture 
topics include a range of general and specialized topics in the field of space weather given 
by a number of active researchers affiliated with LANL. 

In addition to structured lectures, students had the opportunity to engage in 
research projects at the lab through a mentored practicum experience. Each student is 
paired with a LANL-affiliated mentor to execute a collaborative research project, 
typically strongly linked with a larger on-going research effort at LANL. This model 
provides valuable experience and expertise to the student while developing the 
opportunity for future collaboration. 

This report includes a summary of the research efforts fostered and facilitated by the 
Space Weather Summer School. These reports should be viewed as work-in-progress as 
the short session again typically only offers sufficient time for preliminary results. At the 
close of each summer school session, students present a summary of their research 
efforts, and a panel honors the best presenter with an all-expenses-paid trip to the Fall 
Meeting of the American Geophysics Union held in San Francisco. This year’s winner is 
Erik Hogan on "Modeling the Expansion of a Contactor Plasma." Congratulations! 

This program continues to enjoy success through career development opportunities 
for students and opportunities for collaboration between students and mentors. Through 
continued support from a number of laboratory organizations, foremost IGPP, the 
summer school will continue to be hosted at LANL, and plans are already underway for 
commencement of a 2013 session to be held this summer. 
 
 
Los Alamos, NM       Dr. Josef Koller 
January 2013      Summer School Director 
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Estimating magnetic field power spectrum using CRRES magnetometer data

Ashar Ali

Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder

Reiner Friedel

Space Science and Applications Group, Los Alamos National Laboratory

Scot Elkington

Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder

Abstract

We use the magnetic field measurements from the Combined Release and Radiation Effects Satellite (CRRES) to
estimate the Pc5 magnetic field power. These power spectra are computed as a function of radial distance L, intensity
of the magnetic activity Kp, and magnetic local time. Evidence such as results of hypothesis testing are presented to
quantify the relationships between these parameters.

Keywords: radial diffusion, magnetic field PSD, Pc5 waves, CRRES

1. Introduction

It is well known that radial diffusion is one of the mechanisms responsible for populating and depleting the van
Allen radiation belts with high energy charged particles. Since its initial formulation (Fälthammar, 1965) radial diffu-
sion has been considered important to the study of acceleration mechanisms of charged particles in the geomagnetic
environment. The initial formulation has been extended to include for example, drift-resonance interactions between
electrons and ULF toroidal (Elkington et al., 1999) and poloidal (Elkington et al., 2003) waves.

Initial estimates of the diffusion coefficients assumed a fixed value of DLL = DE
LL + DM

LL due to both the electric
and magnetic fluctuations. Brautigam and Albert (2000) have shown that in order to model storm time behavior of
relativistic electrons it is necessary for the diffusion coefficients to be dependent on Kp. Using CRRES electric field
measurement data Brautigam et al. (2005) determined the electric field power spectral densities as a function of L and
Kp covering frequencies between 0.2mHz and 15.9mHz. They assume a purely electrostatic field and compute the
Kp dependent electrostatic component of the radial diffusion coefficient DE

LL. They then conclude that high activity
(Kp=6) causes the average value of the coefficients to be one to two orders of magnitudes higher than for low activity
(Kp=1). Following the work of Brautigam et al. (2005) we will estimate the magnetic field power spectral density
which can then be used to compute the electromagnetic component of the radial diffusion coefficient DM

LL. We will
then study its dependence on L, Kp, and MLT.

2. Data Collection and Preparation

CRRES mission was launched on July 25, 1990 into a geosynchronous transfer orbit with an inclination of 18◦,
perigee of 350 km, and apogee of 3600 km. With an orbit of around 9.5 hours, the apogee precessed from near 0600

Email addresses: ashar.ali@lasp.colorado.edu (Ashar Ali), rfriedel@lanl.gov (Reiner Friedel),
scot.elkington@lasp.colorado.edu (Scot Elkington)
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MLT through local midnight to around 1330 MLT at a rate of 2.5 minutes per day. CRRES orbit was set up to cover
all local times in about 19 months but due to an on board battery failure the mission ended in less than 15 months.
This introduces a bias against data from high L-shells on the dayside.

The stabilized spin period was 30 seconds (2 rpm) with the spacecraft spin axis aligned about 9◦ away from the
earth-sun line. There were sophisticated instruments on board to measure both the electric and magnetic field. The
fluxgate magnetometer (Singer et al., 1992) was located at the end of a boom and measured the full magnetic field
vector every 2.05 seconds. The data provided was spin-fitted and converted from local spacecraft coordinates into a
modified GSE coordinate system where the x-axis points along the CRRES spin axis, almost parallel to the x-axis in
GSE.

The 30 seconds resolution magnetic field data used for this study starts at orbit 190 on October 11, 1990 and ends
on orbit 1062 on October 10, 1991 with orbits 360 to 409 removed. The data was visually inspected for any unusual
spikes or missing data. For small gaps the data was interpolated. Few other orbits, with large data gaps or incomplete
data were eliminated from this study. In additioon, orbits with low Bz while the apogee was near the noon sector were
also eliminated in case there were any magnetopause crossings. After all the clean up, we had considerably more
usable data available to us from the CRRES magnetometer than Brautigam et al. (2005) had from the electric field
instruments.

3. Fourier Analysis and Binning

Since we cannot compute the diffusion coefficient as a continuous function of L, Kp, and MLT, it is necessary
to discretize the parameter space and create bins. The bins were created in a manner similar to what Brautigam et
al. (2005) used. The bins in L are centered at L = 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0. So for example, the bin
L = 5.0 contains data from L = 4.75 to L = 5.25. Since we will have poor statistics for L < 3 and L > 9 as well as
off-equatorial effects, we bin the data with L < 3 into the L = 3 bin and bin L > 7 data into the L = 7 bin. This then
causes statistical confounding so the two extremes bins L = 3 and L = 7 are later discarded. Along the Kp axis, we
bin using

Q = Quiet = {0, 0+, 1-, 1, 1+}

L = Low Activity = {2-, 2, 2+, 3-, 3, 3+}

M = Moderate Activity = {4-, 4, 4+, 5-, 5, 5+}

H = High Activity = {6-, 6, 6+, 7-, 7, 7+}

E = Extreme Activity = {8-, 8, 8+, 9-, 9}

and along the MLT axis, we use MLT = 0, 6, 12, and 18 hours as the bin centers. These additional bins in local time
were created because we wish to investigate how the power in the magnetic field changes with respect to local time.
Because of this binning in MLT, it was necessary to coarsen the Kp grid. Otherwise we would have very poor statistics
in all of the bins. Kp = E bin is also discarded because of the small sample size. Using ephemeris information it was
determined that CRRES spends about 20 minutes in each L-bin so we work with running data segments 20 minutes
long.

The data is first detrended using a cubic smoothing spline. The cubic smoothing spline depends on a smoothing
parameter p which can take any value between zero and one. For p = 0 the smoothing spline gives us the ordinary
least squares fitted straight line. For p = 1 we get the cubic spline with natural boundary conditions which goes
through all of the data points. As p varies from zero to one continuously, the smoothing spline becomes a better
and better approximation of the data. Setting the smoothing parameter at p = 0.00125 the smoothing spline acted
essentially as a low pass filter which is then subtracted to remove power from the zero channel.

Then for each 20 minute segment, the power spectral density is estimated using the multi-tapered method using
seven discrete prolate spheroidal sequences as data tapers. The PSDs are then binned according the L, Kp, and MLT
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Figure 1: A color log plot summarizing the number of data segments in all of the L and MLT bins if Kp = Q is fixed. The L-bins start at L = 3.5
and increase radially outward until L = 6.5. Notice the severity of the positive bias at high L-shells around midnight as well as the negative bias
around noon.

value at the center of the data segment. After all of the data is binned, we looked at the size of the bins to see how
many data segments are in each bin. Almost all of the bins contains thousands of segments while while a few are on
the order of hundreds or even tens. L = 3.5,K p = H,MLT = 6 is the only bin which is completely empty. Figure 1
shows a color plot comparing some of the bin sizes.
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Figure 2: This particular bin contains 2151 data segments all of which are plotted on a log scale along with their arithmetic mean, geometric mean,
and median. Since the median is a more robust measure of central tendency, especially in the presence of outliers, median is the most appropriate
statistic here as a representative of the data in a bin. The median is plotted here along with 25% − 75% inter-quartile range to give an idea of the
spread of the data.
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Figure 3: Median PSDs for various L’s when K p = H and MLT = 0 are fixed.
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Figure 5: Total power in various bins for L = 4.

4. Statistics

After all of the data has been binned, it became necessary to pick a representative data segment from each bin. As
figure 2 shows, the median is a robust measure of central tendency when compared with the arithmetic mean or even
the geometric mean, especially in the presence of outliers. The mean is very sensitive to outliers and since in our bins
outliers may exist a few orders of magnitudes away, the mean is a particularly bad choice for us. Therefore, we pick
the median PSD from each bin as a representative of that bin. Figure 3 compares the median PSDs for various L with
a high Kp activity at midnight.

In order to determine if the difference in power at various local times is statistically significant, we performed
hypothesis testing by applying the (right-tailed) rank sum test comparing bins pairwise in local time. For this com-
parison, the grid in L and Kp was coarsened to low activity, high activity, inner magnetosphere, and outer mag-
netosphere. The rank sum test tests the null hypothesis Median(X) = Median(Y) against the alternate hypothesis
Median(X) > Median(Y). We use the significance level of α = 0.05. The results of all the comparisons are presented
in tables 1, 2, 3, and 4.
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5. Discussion

We see from figure 1 that we have fewer statistics around noon time than compared with other local times. Figure
2 shows that PSDs from a single bin can vary up to 2-3 orders of magnitude. The power is nearly flat from 0.81 mHz
to 4.1 mHz at which there is a very weak maximum peak at which is observed in almost all of the bins. Figure 3 also
shows that the power seems to be independent of L. As frequency changes, the ranking of powers at different L also
changes as the curves cross each other.

Figures 3 and 3 verify the fact that high Kp activity results in higher power than power at quieter times (Takahashi
and Anderson, 1992) but we also see that towards midnight, higher power occurs close to L = 5, 5.5. They also show
that at L = 4 power is at maximum on the dusk side. The results of the statistical comparison let us decide if such
differences are significant or not. They provide us with a quantification as well as a concise summary of all of the
comparisons. From tables 1 and 2, we see that during quiet times the only thing we can say for sure is that noon has
higher power than at other times. For the outer magnetosphere we also have additional weak evidence that there is
more power at dusk than dawn. From tables 3 and 4 we see that during high activity the dominance of power at noon
is not so clear anymore. At low L-shell values noon and midnight both have higher powers than at dawn-side. At
higher L-shells all three sectors have more power than dawn-side. For all other comparisons we don’t have enough
statistical evidence to conclude anything.

We are primarily concerned with Pc5 waves and (Takahashi and Ukhorskiy, 2007) has shown that they have a
strong dependence on solar wind. Hence solar wind velocity is another parameter which should be explored but
during the lifetime of the CRRES mission, the only data available is from IMP 8 which has a resolution too low to be
of any use to us. As demonstrated (partially due to incomplete observations) there are quite a few uncertainties which
impede us. The interquartile range is intended to give an example of how varied the power (and hence the diffusion
coefficients themselves) can be. But despite the fact that we have only single point measurements we have established
some facts with strong evidence for them. Clearly, more investigation is needed to explore this parameter space and
comprehend the individual acceleration mechanisms as well as their interactions with each other.
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MLT - Y
0 6 12 18

MLT - X

0 - 0.4947 0.9988 0.3590
6 0.5160 - 0.9993 0.3792

12 0.0013 0.008 - 0.0015
18 0.6510 0.6310 0.9987 -

Table 1: Low Kp activity in the inner magnetosphere

MLT - Y
0 6 12 18

MLT - X

0 - 0.2225 0.9812 0.8156
6 0.7855 - 0.9987 0.9619

12 0.0201 0.0015 - 0.0230
18 0.1917 0.0405 0.9785 -

Table 2: Low Kp activity in the outer magnetosphere

MLT - Y
0 6 12 18

MLT - X

0 - 0.0028 0.3894 0.1157
6 0.9974 - 0.9923 0.9214

12 0.6208 0.0084 - 0.2068
18 0.8895 0.0827 0.8008 -

Table 3: High Kp activity in the inner magnetosphere

MLT - Y
0 6 12 18

MLT - X

0 - 0.0019 0.7266 0.8733
6 0.9982 - 0.9987 0.9998

12 0.2824 0.0015 - 0.7527
18 0.1324 0.0002 0.2558 -

Table 4: High Kp activity in the outer magnetosphere
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Modeling the Expansion of a Contactor Plasma

Erik A. Hogan

University of Colorado at Boulder, Boulder, CO 80309

Gian Luca Delzanno

Los Alamos National Laboratory, Los Alamos, NM

Abstract

Plasma contactor technology is widely used on board spacecraft to keep spacecraft charging levels under control.
On the International Space Station, for instance, it is used to prevent high current discharges between differently
charged surfaces. It consists of emitting a neutral plasma to create a plasma reservoir near the spacecraft in order to
balance the currents collected by the spacecraft from the magnetospheric environment. One approach to modeling
the contactor plasma plume applies a self-similar solution in order to gain insight into the plume dynamics without
requiring expensive numerical simulations. Typically, hydrodynamic fluid equations are used to model the plasma
behavior. In this paper, a comparison of two self-similar plume expansion models is presented. Approximate analytic
models are obtained for plasma plume expansion into vacuum.

Keywords: plasma plume modeling, self-similar expansion, contactor plasma

1. Introduction

In earth orbit, spacecraft experience several types of natural charging. One type of charging that occurs can
be attributed to the presence of a plasma environment around the spacecraft. The interaction between the charged
particles in the plasma and conducting surfaces on a spacecraft can result in charging on the order of 10’s of kiloVolts.
The use of plasma contactor technology is important for spacecraft applications where dangerous charging is an issue.
A neutral plasma, often Xenon, is emitted from a spacecraft into the surrounding environment to create a plasma
reservoir which is used to balance out the charging from the natural environment. On the international space station
(ISS), for instance, a large charge differential may develop between the tips of the solar panels and the hull (Gabdullin
et al., 2008). Left unchecked, the charge differential results in a discharge current between the different parts of the
ISS. This may be damaging to onboard electronics or dangerous to astronauts on a spacewalk.

In order to study applications of a contactor plasma, a method is needed to model the expansion of the emitted
plasma plume into the surrounding environment. One way to accomplish this is through the use of particle-in-cell
(PIC) simulations, which provide an accurate first principle description of plasma behavior at the expense of compu-
tation time. For a large contactor plasma plume (∼1 km), the use of PIC simulations presents serious challenges. For
a PIC simulation to be stable and accurate, the simulation domain needs to resolve both the smallest time and length
scales of the problem. Typical contactor plumes have a plasma temperature in the 1-5 eV range and an ion injection
velocity of a few km/s. With a typical emission of 1018 particles per second, the Debye length of the plasma may be
on the order of millimeters. For a plasma plume with an overall size on the order of a kilometer, there is a difference
in scale of six orders of magnitude. The computational burden for such a scenario is immense, and impossible with
typical PIC codes even on today’s supercomputers.

To circumvent this problem, analytic solutions for plume expansion are desired. In this paper, two analytic plume
models are considered (Korsun, 1995; Merino et al., 2011). Both of them apply the method of self-similarity to plasma

Email addresses: erik.hogan@colorado.edu (Erik A. Hogan), delzanno@lanl.gov (Gian Luca Delzanno)
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fluid equations to arrive at an analytic solution for a plasma plume expanding into a vacuum. While the respective
plume models are similar in their solution procedure, slightly different fluid equations are used to model the plasma
behavior.

The paper is structured as follows. First, an overview of the fluid equations used to describe the plasma behavior
is presented. Next, the self-similar solution procedure in Korsun (1995) is reproduced, resulting in an approximate,
analytic plume model. Lastly, the developments in Merino et al. (2011) are reproduced. Three solution treatments are
considered, and the corresponding analytic plume models are presented.

2. Background

In this paper, two different plume models are considered. Both models start from the two-fluid equations for
a plasma of electrons and ions. The models include a continuity equation for the plasma (quasi-neutrality holds),
momentum equations and an equation of state for pressure. The equations are written in cylindrical geometry with
azimuthal symmetry and a steady-state solution is sought.

2.1. Fluid Equations in Korsun (1995)

The first plume model under consideration is developed in Korsun (1995). Here, a detailed replication of the
self-similar plume model is presented. The solution is obtained after consideration of the fluid equations at steady
state:

∂nu
∂x

+
1
r
∂(rnv)
∂r

= 0 (1a)

mn
(
u
∂u
∂x

+ v
∂u
∂r

)
= −

∂nT
∂x

(1b)

mn
(
u
∂v
∂x

+ v
∂v
∂r

)
= −

∂nT
∂r

(1c)

n
γ − 1

(
u
∂T
∂x

+ v
∂T
∂r

)
+ nT

(
∂u
∂x

+
1
r
∂rv
∂r

)
= ∇ · ~q, (1d)

where m is the ion mass, ~V = (u, v) is the velocity field, n is the plasma density, T is the plasma temperature, γ is the
adiabatic index, and ~q is the heat flux. These fluid equations are expressed in cylindrical coordinates. Here, x is along
the axis of the jet and r is the radial direction, normal to the jet axis. The velocity in the x direction is denoted as u,
and v is the velocity in the r direction. Axial symmetry of the jet is assumed for this problem.

2.2. Fluid Equations in Merino et al. (2011)

The second plume model considered is developed in Merino et al. (2011). The fluid equations used to obtain a self-
similar solution are somewhat different than before. Rather than including an equation for temperature, a polytropic
equation of state is used. In this case, the set of fluid equations is

∂nu
∂x

+
1
r
∂(rnv)
∂r

= 0 (2a)

u
∂u
∂x

+ v
∂u
∂r

+
e

mi

∂φ

∂x
= 0 (2b)

u
∂v
∂x

+ v
∂v
∂r

+
e

mi

∂φ

∂r
= 0 (2c)

1
n
∇(nTe) − e∇φ = 0, (2d)

where φ is the electric potential of the plume and e is the elementary charge. The subscripts e and i refer to electrons
and ions, respectively. Equations (2b) and (2c) are the ion momentum equations, while Eq. (2d) stems from the

2
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electron momentum equation after neglecting electron inertia.1 The above set of equations, taken alone, will not yield
a solution as there are more unknowns than equations. In order to remedy this issue, the polytropic relation

nTe = Te0
nγ

nγ−1
0

(3)

is introduced. In this model, the electron temperature is assumed to be constant throughout the plume (Te = Te0).
Combined with the fluid equations above, this relation allows for a self-similar solution for the plume expansion.

3. Self-Similar Solution in Korsun (1995)

Here, we proceed through the solution procedure outlined in Korsun (1995). The streamlines of the plume are
assumed to expand according to

r(x) = r0a(x), (4)

where a(x) is a function whose form will be obtained from the self-similar solution procedure. Furthermore, the scaled
coordinate

η =
r

a(x)
(5)

is introduced.
It is assumed that the plume solution will separate as functions of x and η. To obtain a self-similar solution, the

self-similar form

u = uc(x)y(η) (6a)
v = uηa′ (6b)
T = Tc(x)τ(η) (6c)

nu =
Ṅλ
πa2 f (η) (6d)

is used. The constants Ṅ and λ are plume characteristics formally defined as

Ṅ =

∫ ∞

0
nu2πrdr

λ−1 =

∫ ∞

0
f 2ηdη.

Note that τ(0) = y(0) = f (0) = 1. For compactness of notation, ()′ is used to denote a derivative with respect to the
independent variable. For example, u′c = ∂uc

∂x .

3.1. Continuity Equation
Korsun (1995) claims that with this self-similar solution form, Eq. (1a) reduces to an identity. The proof follows.

First, we compute the following derivatives. Let nu = β(a) f (η), where β = Ṅλ
πa2 . Then

∂nu
∂x

= −2 f
β

a
a′ − β

η

a
a′ f ′ (8)

and

nv = nua′η (9a)
1
r
∂rnv
∂r

= 2 f
β

a
a′ + β

η

a
a′ f ′ (9b)

Combining Eqs. (8) and (9b) in the continuity equation clearly reduces to identity.

1From Eq. (2d) we have ∇(nTe)
n = e∇φ, which implies that Eqs. (2b) and (2c) are in fact formally equivalent to Eqs. (1b) and (1c).

3
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3.2. Momentum Equation for v (radial component)
We will begin with an analysis of Eq. (1c). Note the following identities

∂v
∂x

= yηa′u′c − uc
η2

a
(
a′

)2 y′ − ucy
η

a
(
a′

)2
+ ucyηa′′ (10a)

∂v
∂r

= uc
η

a
a′y′ + uc

y
a

a′ (10b)

∂nT
∂r

= Tcτn
(

1
f a

f ′ −
1
ya

y′
)

+ n
(Tc

a
τ′

)
. (10c)

The above identities are used in Eq. (1c) to yield (after some reduction)

mucy2η
(
a′u′c + uca′′

)
=
τTc

a

(
y′

y
−

f ′

f
−
τ′

τ

)
.

The goal here is a separation of variables, where all terms dependent on x are on one side of the equation and those
depending on η are on the other. With some minor rearranging this is achieved, resulting in

mauc

Tc

(
a′u′c + uca′′

)
=

τ

y2η

(
y′

y
−

f ′

f
−
τ′

τ

)
= C1, (11)

where C1 is the constant of variable separation. There is one further simplification that may be made, noting that(
a′u′c + uca′′

)
=

(
uca′

)′ .
We have thus obtained the same relation as Reference 3, namely

mauc

Tc

(
uca′

)′
= C1. (12)

The right-hand side of Eq. (11) will be left for use later on.

3.3. Momentum Equation for u (axial component)
Here, Eq. (1b) is considered. As before, the following useful identities are defined

∂u
∂x

= yu′c − uc
η

a
a′y′ (13a)

∂u
∂r

=
uc

a
y′ (13b)

∂nT
∂x

= −2
nTcτ

a
a′ + nτ

(
T ′c −

Tc

uc
u′c

)
+

nητ
a

a′
(

1
y

y′ −
1
f

f ′ −
1
τ
τ′

)
(13c)

Insertion of the above into Eq. (1b) and performing some minor simplifications yields

−2
Tc

a3uc
a′ +

1
a2uc

T ′c −
Tc

a2u2
c

u′c +
my2

a2τ
u′c +

Tcη

a2uc

1
a

a′
(

1
y

y′ −
1
f

f ′ −
1
τ
τ′

)
= 0.

This equation can be simplified further by noting that

−2
Tc

a3uc
a′ +

1
a2uc

T ′c −
Tc

a2u2
c

u′c =
∂

∂x

(
Tc

uca2

)
.

With this simplification, the momentum equation for u is

d
dx

(
Tc

uca2

)
+

my2

a2τ
u′c +

Tcη

a3uc
a′

(
1
y

y′ −
1
f

f ′ −
1
τ
τ′

)
= 0. (14)

4
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Lastly, using Eq. (11) yields
d
dx

(
Tc

uca2

)
+

my2

a2τ
u′c +

Tc

a3uc
a′

(
y2η2

τ
C1

)
= 0. (15)

This equation is not separable. However, by imposing an additional constraint on the system, a separable form may
be obtained. First, let

τ

y2 = 1 + ψ(η), (16)

which is convenient because τ(0)/y(0) = 1. Inserting this into the above equation results in

mu′c
a2 +

(
Tc

uca2

)′
= −

(
Tc

uca2

)′
ψ +

a′Tc

a3uc
(−C1η

2), (17)

which can be separated if
mu′c
a2 +

(
Tc

uca2

)′
= 0. (18)

By imposing this constraint on the solution, it follows that

ψ

C1η2 = −

a′
a3

Tc
uc(

Tc
uca2

)′ =
1

C2
, (19)

where C2 is a constant of separation. After a few steps of simplification and manipulation, the two relationships

τ

y2 = 1 +
C1

C2
η2 (20)

and
Tc

Tc0
=

uc

uc0

(
a
a0

)2−C2

(21)

are obtained. Note that the subscript 0 refers to the values of the corresponding quantities at the origin, e.g. Tc0 =

Tc(0). Now, we return to the right hand side of Eq. (11), rewriting it as

τ

y2η

(
∂ ln y
∂η
−
∂ ln f
∂η

−
∂ ln τ
∂η

)
= C1

Substituting in the relationship for τ/y2 and separating the variables,

d
(
ln

(
y
f τ

))
=

C1η

1 + C1
C2
η2

dη. (22)

Integrating and employing Eq. (20) once more yields the relation

y f =

(
1 +

C1

C2
η2

)−1−C2/2

(23)

3.4. Temperature Equation

Lastly, Eq. (1d) is considered. Plugging in the self similar solution and simplifying results in

Ṅλ
πa2 Tc f τ

d
dx

[
ln

(
T 1/(γ−1)

c uca2
)]

= ∇ · ~q. (24)

5
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This equation may be reduced further if the assumption ∇q = 0 is made. For this condition, the above simplifies as

T 1/(γ−1)
c uca2 = const. (25)

Combining this with Eq. (18) results in the condition

mu2
c

2
+

γ

γ − 1
Tc = const. (26)

.

3.5. Plume Solution
For the three x-dependent variables uc,Tc, and a four equations result from the self-similar solution procedure:

mauc

Tc

(
uca′

)′
= C1 (27a)

T 1/(γ−1)
c uca2 = T 1/(γ−1)

0 uc0a2
0 (27b)

Tc

uca2−C2
=

T0

uc0a2−C2
0

(27c)

m
u2

c

2
+

γ

γ − 1
Tc = m

u2
c0

2
+

γ

γ − 1
T0. (27d)

This situation is problematic because the problem is over-determined. The only solution which satisfies all four of
these equation simultaneously is the case of constant Tc, uc, and a. To circumvent this problem, Reference 3 chooses
to set u2

c = u2
0

[
1 + 2M−2

0 (γ − 1)−1
]

= const and neglect satisfaction of Eq. (27d). Correspondingly, it is easily shown
that C2 = 2γ in order to satisfy Eqs (27b) and (27c). Lastly, the separation constant C1 is simply chosen as equal to
C2. With these assumptions, the flow parameters are found to evolve along the flow axis as

Tca2(γ−1) = Tc0a2(γ−1)
0 (28a)

mau2
ca′′ = 2γTc0

(a0

a

)2(γ−1)
, (28b)

the latter of which may be solved to yield the function a(x).
For the η-dependent terms, we are left with the two equations

f y =
(
1 + η2

)−γ−1
(29a)

τ

y2 = 1 + η2. (29b)

Here, as in Reference 3, the case of τ = 1 is chosen, which corresponds to uniform temperature in the flow cross
section, i.e. dT/dr = 0, is considered. For this condition, note that y = (1 + η2)−1/2 and f = (1 + η2)−γ. Inserting these
into the self-similar solution yields

n =
Ṅ(γ − 1/2)
πa2uc

1(
1 + r2/a2)γ (30a)

u = uc
1

(1 + r2/a2)1/2 (30b)

v = u
r
a

a′ (30c)

T = Tc0

(a0

a

)2(γ−1)
. (30d)

Thus, the plume model solution has been obtained.

6
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It is important to point out that this plume solution does not satisfy the fluid equations (1a)-(1d). The reason for
this lies in the fact that, to obtain a solution, an assumption is made that uc is constant. Furthermore, the condition in
Eq. (27d), required for satisfaction of the u-momentum equation, is ignored. Effectively, this means that Eq. (1b) is
not satisfied by the plume solution. An estimate of the error can be obtained by evaluating the momentum equation.
While the error will not be zero, it may be small enough that the solution is still a valid approximation of the plasma
expansion.

4. Self-Similar Solution in Merino et al. (2011)

Next, we consider the self-similar plume expansion solution derived in Merino et al. (2011). Here, the fluid
equations are normalized using Te0,mi, e, n0 and a characteristic length R0. To arrive at the normalized form, note that
n̂ = n/n0, φ̂ = eφ/Te0, û = u/

√
Te0/mi, and v̂ = v/

√
Te0/mi. Dimensionless variables are denoted with a hat, e.g.

φ̂ = eφ/Te0. The self-similar solution is assumed to have the form

û = uc(x̂)ut(η) (31a)
v̂ = ûηa′(x̂) (31b)

n̂ = nc(x̂)nt(η), (31c)

where η = r̂/a. While appearing in the fluid equations, the electric potential, φ, is not explicitly needed to arrive at a
solution; it can be obtained by postprocessing the electron momentum equation. The self-similar quantities have the
boundary conditions uc(0) =

√
γM0, ut(0) = 1, a(0) = 1, nc(0) = 1, and nt(0) = 1. Note that M0 is the flow mach

number at the point of plume emission (x=0).

4.1. Continuity Equation

Inserting the self-similar solution into the continuity equation yields

2ncuca′ + a(ucn′c + ncu′c) = 0, (32)

which, after a few steps, reduces to
(a2ncuc)′ = 0. (33)

Integrating this expression yields

a2ncuc = const =
√
γM0. (34)

4.2. Momentum Equation for v (radial component)

Once again, the momentum equation for the radial velocity component is considered first. Normalizing the fluid
equations and plugging in the self-similar solution yields

γ(ncnt)γn′t
ncn2

t
+ ηaucu2

t (a′u′c + uca′′) = 0. (35)

Making note of the minor simplification (uca′)′ = a′u′c + uca′′, the preceding equation may be separated as

uca

nγ−1
c

(uca′)′ = −
γnγ−2

t n′t
ηu2

t
= γC, (36)

where C is a constant of separation.

7
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4.3. Momentum Equation for u
Next, the momentum equation for u is considered. Again, normalizing and plugging in the self-similar solution

yields (after some simplification)

γ(ncnt)γ−2(ntn′c −
a′

a
ηncn′t) + ucu2

t u′c = 0, (37)

which is unfortunately not separable. However, if an appropriate assumption is made, then the derivative of Eq. (37)
with respect to η is separable. Similar to the developments in Korsun (1995), the solution is assumed to satisfy

γnγ−2
c n′c + ucu′c = 0. (38)

This condition is equivalent to satisfying the momentum equation for u along the center line (r̂ = 0), and can be
integrated to yield

1
2

u2
c +

γ

γ − 1
nγ−1

c = const =
1
2
γM2

0 +
γ

γ − 1
. (39)

Imposing this constraint on the solution and taking the η derivative of Eq. (37), the result ultimately separates as

n′c
nc

a
a′

= −
2n′t

2ntu′t/ut − (γ − 1)n′t
= D. (40)

Integrating the left hand side of this equation yields

nc = aD. (41)

Likewise, integrating the η dependent terms results in

n2−D(γ−1)
t = u−2D

t . (42)

4.4. Electric Potential
From the self-similar solution procedure, an analytic expression for the normalized density (n̂) is obtained. In

returning to the fluid equations used to generate a solution, a relationship between n̂ and φ̂, the potential, is found.
From the electron momentum equation (neglecting electron inertia),

1
n
∇(nTe) = e∇φ, (43)

where Te is the electron temperature. After normalizing, this equation reduces to

1
n̂
∇n̂ = ∇φ̂, (44)

the solution to which is the Boltzmann relation
n̂ = κeφ̂. (45)

where κ is a constant of integration. Noting that potential is measured relative to some arbitrary reference, the constant
κ is set to 1 without loss of generality, leading to n̂ = eφ̂.

4.5. Plume Solution
For the x̂-dependent terms uc, nc and a, four relationships exist:

a2ncuc =
√
γM0 (46a)

uca

nγ−1
c

(uca′)′ = γC (46b)

1
2

u2
c +

γ

γ − 1
nγ−1

c =
1
2
γM2

0 +
γ

γ − 1
(46c)

nc = aD. (46d)

8

Los Alamos Space Weather Summer School 2012 16



Again, the over-determined nature of the problem ultimately prevents a full solution from being obtained. Satisfying
all four of these conditions simultaneously requires a non-real solution. This problem will be addressed shortly.

For the η-dependent terms nt and ut, two relationships result:

1) n2−D(γ−1)
t = u−2D

t (47a)

2) −
γnγ−2

t n′t
ηu2

t
= γC. (47b)

In order to arrive at a solution, an assumption for the u velocity component is made. Three different models are
considered here; all assume a constant uc =

√
γM0. The difference between them lies in how ut is chosen. By simply

choosing a velocity profile for u, the momentum equation for u is ignored. This means the conditions in Eqs. (46c),
(46d), and (47a) no longer apply to our solution. The error in the solution may be evaluated using this neglected
momentum equation.

First, let us consider the implications of a constant uc. Immediately, the two remaining conditions for the x
dependent terms become

nc =
1
a2 (48)

and
a′′ = a1−2γ C

M2
0

. (49)

It is worth noting the similarities between these developments and those in Korsun (1995). Fundamentally, they are
the same, with the differences being attributed to the normalized quantities used here. Next, Eq. (47b) is integrated to
yield

nγ−1
t = 1 − (γ − 1)C

∫
ηu2

t dη. (50)

Now, two different models are considered. The first is the Parks and Katz (PK) model (Parks and Katz, 1979)
. The PK model makes the simple assumption of ut = 1. This merely implies that velocity is constant in a flow
cross-section. Plugging this into Eq. (50) yields

nγ−1
t = 1 −

1
2

(γ − 1)Cη2. (51)

The second model is the Ashkenazy and Fruchtman (AF) model (Ashkenazy and Fruchtman, 2001). Here, a
conical velocity profile is assumed, with

ut =
(
1 + (a′)2η2

)−1/2
. (52)

As the plume diverges from the centerline, the velocity is assumed to drop off. Using this velocity profile in Eq. (50)
yields

nγ−1
t = 1 − (γ − 1)

C
2(a′)2 ln

(
1 + (a′)2η2

)
(53)

Once again, it is important to point out that the PK and AF plume models do not satisfy the momentum equation
for u, due to the assumptions made about the velocity profile used to gain a solution. The relative local error may be
evaluated using

ε =

(
û
∂û
∂x̂

+ v̂
∂û
∂r

+ γn̂γ−2 ∂n̂
∂x̂

)
/û2, (54)

which is essentially a normalized evaluation of the axial momentum equation. For the assumed constant uc, this
equation reduces to

ε =
1

M2
0

(
n′c
nc
− η

a′

a
n′t
nt

)
. (55)

Being inversely proportional to the flow mach number, this error will be relatively small for actual thruster plumes
where M0 can be greater than 20.

9

Los Alamos Space Weather Summer School 2012 17



5. Plume Profiles

To illustrate the plume models, density profiles are plotted for the Korsun (1995) and Ashkenazy and Fruchtman
(2001) plume models. The Parks and Katz (1979) model is not plotted due to its similarity with the AF model. For
the sake of comparison, the density profile in Eq. (30a) is normalized in the same manner used to obtain the AF model
density. The adiabatic index is set to γ = 5/3 for both plume models, and the flow mach number is assumed to be
M0 = 20.

To compute the density profile for the AF model, the separation constant C must be defined. It is computed such
that 95% of the flow lies within the η = 1 streamline, which corresponds to a value of C = 2.64. The initial slope of the
streamline expansion function is defined as a′(0) = 0.2. The resulting plume density profile is shown in Figure 1(a).
To compute the relative local error, Eq. (55) is used. The error in the AF plume model is shown in Figure 2(a). The
worst errors are seen near x = 0, in the region outside the plume. There are, however, zero-error streamlines where
the axial momentum equation is satisfied.

To compute the density profile for the Korsun model, a′(0) = 0 is used. The resulting plume density is shown in
Figure 1(b). To compute the relative local error, the axial momentum equation is normalized using the same procedure
as Merino et al. (2011). For the Korsun model, the error is computed as

εK =

(
û
∂û
∂x̂

+ v̂
∂û
∂r̂

+
1
n̂
∂n̂T̂
∂x̂

)
/û2. (56)

This error is plotted in Figure 2(b). Unlike the AF model, there are no zero-error streamlines in the KT model. Once
again, the largest errors occur in the region of x = 0.

6. Conclusion

In this paper, a self-similar solution procedure is used to gain an approximate, analytic solution for the expansion
of a plasma plume into a vacuum. A detailed reproduction of developments in literature is performed. The first paper
considered is Korsun (1995), where a plume solution is derived assuming a separable solution form. Ultimately, an
exactly valid analytic solution is unobtainable, with an approximate analytic solution resulting. The second paper
considered is that of Merino et al. (2011). Once again, efforts to obtain an analytic solution for the plume expansion
are thwarted due to the over-determined nature of the problem. Two different approaches are considered to circumvent
the issue and arrive at an approximate solution.
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(a) Log(n̂)- AF Model

(b) Log(n̂)- Korsun Model

Figure 1: Density profiles for a) AF model and b) Korsun model

(a) Log(ε)- AF Model

(b) Log(εK )- Korsun Model

Figure 2: Relative local errors for a) AF model and b) Korsun model
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Abstract

Monte Carlo simulation methods in GEANT4 are used to determine energy measurements and particle
identification for a two element detector. Detectors of various thickness and sizes include silicon and
YSO materials. Different types of energetic particle sources are incident onto the detectors and the
deposited energies are calculated. These simulations are performed under LANL's General Response
Simulation System(GRESS). GRESS uses a Monte Carlo simulation to determine the response of an
instrument to known photo or particle radiation fields. The system records energy deposits within a
given detector and it can apply any desired calibration effects for an instrument design. The GRESS
package has several external dependencies: it requires the GEANT4 Monte Carlo simulation toolkit
and the ROOT data analysis package, originating from the high energy particle physics simulation
toolkit as used by CERN. In addition, the Geometry Description Markup Language (GDML) is used to
define the simulation mass models. Our simulation results and post-processing data analysis presented
here,  will  be  combined with  existing  calibrations from energetic  particle  data  from beam labs  to
determine energetic particle instrument responses for space weather data product delivery.

1. Introduction

Since  Van Allen's discovery of the radiation belts and many of the subsequent discoveries, particle
detection  has  been  fundamental  to  space  science.  To  provide  accurate  information  about  particle
distributions, the particle detectors need to be thoroughly calibrated before they are lunched to the
space. There are basically two ways for calibrations: experimentally using existing high energy particle
beam facilities to radiate onto the particle detectors, from the known particle sources to calibrate the
instruments; Using powerful computer simulations to determine the instrument response and compare
to the experimental data. For our purpose, we use LANL's in house simulation package - The General
Response Simulation System (GRESS). GRESS is based upon GEANT4 code by CERN, developed specially for
space science applications and has been successfully implemented for particle instrument calibration. In this
project we use GRESS to calibrate a two element detector for space particle energy measurements and particle
identification.
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2. Methodology

GRESS uses Monte Carlo simulation to determine the response of an instrument to known photon or particle
radiation fields. The system records energy deposits within the detector and applies calibration effects to the
data. It is designed to provide flexibility in the choice of source position and input energy distribution. 

2.1 Simulation Tools
The general architecture of the GRESS code is shown in Figure 1 below. The system is based on a two-step
simulation process—one computation-intensive step to generate the ideal physical response of an instrument,
and  another  (faster)  step  to  incorporate  non-ideal  instrument-specific  effects  into  the  response  function.
Separating  these  steps  allows  changing  instrumental  parameters  without  regenerating  the  costly  physical
response data. Data between these steps is captured in large files using the “root” package from CERN. The
standard end products of GRESS are files that contain a spectrum or a detector response matrix. In practical use,
a collection of DRMs is required to describe the full instrument response as a function of variables such as angle,
position, operating mode, etc. These collections could be used to form a DRM database, which is accessed by
auxiliary data analysis systems that require knowledge of the instrument response. 

In our simulations we use program Physim(“physical simulator”). Physim is a program to model and simulate
the ideal  physical  response of  arbitrary  instruments.  It  uses  the GEANT4 Monte  Carlo  radiation  transport
modeling and simulation toolkit  with  GRESS-specific  augmentation.  Inputs consist  of  interactive or  stored
commands along with could be used to form a DRM database, which is accessed by auxiliary data analysis
systems that require knowledge of the instrument response. 

2.2 Simulation Setup
The particle detectors simulated is designed into two groups, low energy detectors(LD) and high energy
detectors(HD). LD consist of 2 pieces of silicon(Figure 2), each measured 80um and 3500um thick;
HD consist of one 300um thick silicon, one YSO crystal with radius of 2.3cm. 

Figure 2. Schematics of low energy detector(left) and high energy detector(right).
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LD is designed to measure the stopping power based on the following equation:

–dE/dx= (4Z2mec2/β 2)•C•ρ•[ln{2mec2β 2/(I(1-β 2))} –β 2] (1)

where mec2 is the electron rest energy, c is the speed of light, β is v/c, v is the particle speed, C = πNoe4(z/
m)/(me2c4),  z,  m, ρ are the average nuclear charge, nuclear mass and mass density, respectively of the
material, and I  (~13.5zeV) is the average ionization potential of electrons in the material. 

Dividing both sides of equation (1) by ρ, and substituting the numerical values for C = 0.150(z/m) cm2
and mec2= 0.511 MeV, gives for the energy loss by ionization expressed in MeV per g/cm2 units

–dE/(ρdx)= –dE/dξ=0.307(Z2/β 2)•(z/m)•[ln{2mec2β 2/(I(1-β 2))} –β 2] (2)

For non-relativistic particles (β<< 1) the stopping power for protons (Z= 1) reduces to

–dE/dξ=0.153(mpc2/Ε)•(z/m)•[11.93 –ln(z) –ln(mpc2/Ε)] (3)

Figure  3  shows  a  plot  of  equation  (3)  for  protons  traversing  Si  (z  =14)  with  a  curve  based  on
experimental stopping power data. 

Figure 3 – Proton/Electron Stopping power in Silicon.

HD is a scintillation detector. An energetic particle passing through a scintillator material excites atoms
that then emit light as they decay to their ground states, the light is then converted to an electrical signal
that is amplified and recorded(Figure 4). 

Figure 4 – Schematics of scintillation counter.Los Alamos Space Weather Summer School 2012 23



The beam input  is critical to simulate the instrument response. we can vary the input beam type,
energy, shape, size, pointing angle, beam angle to simulate different environments. For this project we
are focusing on energy response for proton and electron, so the input beam's shape, size, angles are kept
constant while sweep the energy range and particle type as the simulations input. Here is one sample
beam input :

/gps/particle proton
/gps/pos/shape Circle 
/gps/pos/radius 0.05 cm
/gps/ang/type beam2d 
/gps/pos/srcdistance 5.0 cm 
/gps/pos/srctheta 0. deg 
gps/pos/srcphi 0. deg
/gps/ene/mono 100 MeV

3. Simulation Results

The energy range a detector can measure is limited by its energy deposition. There is no lower limit as
the particle energy will  be deposited in the front silicon piece; for upper limit,  once the energetic
particle “punch through” the back detector materials, the stopping power and scintillation method are
no longer valid. Based on  the simulation data, energy range for input proton is 10Mev – 150Mev,
energy  range  for  input  electron  is  500Kev  to  15Mev.  Figure  5  –  8  show  the  simulations  for
Proton/electron beam shot  onto LD/HD detectors,  blue  lines are  proton  trajectory,  green lines are
generated photons, red lines are electron traces.

Figure 5 - LD1/LD2 Proton Simulation, left: Proton Parallel 18Mev; right: proton parallel 32Mev.

Figure 6 - LD1/LD2 Electron simulation, left: Electron parallel 3 MeV; right: electron parallel 15 MeV.Los Alamos Space Weather Summer School 2012 24



Figure 7 - HD1/HD2 Proton Simulations, left: Proton parallel 40 MeV. Right: Proton parallel 142 MeV.

Figure 8 - HD1/HD2 electron simulation, left: Electron 2 Mev; right: Electron 15 Mev.

Geant4 also kept records of the interaction statistics,  Figure 9 – 12 show the interaction statistics
corresponding to different input particle energy.

Figure 9 - LD interaction histogram Proton left: Ein=1Mev, right: Ein=30Mev

Figure 10 - LD interaction histogram electron left: Ein=2Mev, right: Ein=15Mev.
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Figure 11 - HD interaction histogram Proton left: Ein=10Mev, right: Ein=142Mev.

Figure 12 - HD interaction histogram electron left: Ein=2Mev, right: Ein=15Mev.

4. Conclusion and Future Work

From simulations the LD/HD detector energy response is calculated(Figure 13).

Figure 13 -  Energy response
Los Alamos Space Weather Summer School 2012 26



The preliminary results presented here will be combined with other calibration data to generate the
better instrument response modeling. For future simulation works, there are two areas can be further
refined: the instrument geometry and material modeling can be build in more realistic setup; the input
particle beam parameters should be modified to reflect more realistic space environments, we can use
existing experimental data such as CREME96 to generate better results.
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Angles-Only Orbit Determination For Electro-Optical Sensors

Richard Linares

Graduate Student, University at Buffalo

Abstract

This paper studies the problem of determining a resident space object’s (RSOs) orbit from astrometric data. Solar
radiation and atmospheric drag disturbance forces are modeled and used in the estimator. Two scenarios are used to
simulate synthetic data for two different RSOs orbits, a geosynchronous transfer orbit and a low earth orbit scenario.
Data samples are generated over a ten day period when the RSO is over the observation ground site, not in shadow,
and the sky is dark enough for optical measurements. An Unscented Kalman Filter is applied to this problem and
the orbit determination accuracy is shown using electro-optical measurements. The results are discussed and the two
scenarios are compared.

Keywords: Nonlinear Filtering, Orbit Determination, Ballistic Coefficient Estimation

1. Introduction

In recent years space situational awareness, which is concerned with collecting and maintaining knowledge of all
objects orbiting the Earth, has gained much attention. The U.S. Air Force collects the necessary data for space object
catalog development and maintenance through a global network of radars and optical sensors. Due to the fact that
a limited number of sensors are available to track a large number of resident space objects (RSOs), the sparse data
collected must be exploited to the fullest extent. Various sensors, such as radars, exist for RSO state estimation, which
typically includes position, velocity, and a non-conservative force parameter,B∗, analogous to a ballistic coefficient.
This work models both the ballistic coefficient and the SRP albedo area-to-mass ratio while designing an estimator to
estimate the orbits of a Low Earth Orbit (LEO) and Geostationary Transfer Orbit (GTO) RSO.

Deep space optical surveys of near geosynchronous (GEO) objects have identified a class of high area-to-mass ratio
(HAMR) objects Schildknecht (2007). The exact characteristics of these objects are not well known and their motion
pose a collision hazard with GEO objects due to the SRP induced, large variations of inclination and eccentricity.
HAMR objects can also be influenced drag forces since the area-to-mass ratio is important in the magnitude of drag
disturbances. by These objects are typically non-resolved and difficult to track due to dim magnitude and dynamic
mismodeling. Therefore, characterizing the large population of HAMR objects in geostationary orbit is required
to allow for a better understanding of their origins, and the current and future threats they pose to the active SO
population.

Estimating the dynamic characteristics of a HAMR object using light curve and astrometric data can allow for area-
to-mass parameters to be observable. It has been shown that the SRP albedo area-to-mass ratio,CrA

m , is observable
from angles data Kelecy and Jah (2011) through the dynamic mismodeling of SRP forces. Reference Kelecy and
Jah (2011) conducts a study with simulated and actual data to quantify the error in the estimates ofCrA

m and good
performance is found using data spanning over a number of months. Also Ref. Linares et al. (2010, AIAA-2009-6293)
shows that orbital, attitude and shape parameters can be recovered with sufficient accuracy using a multiple-model
adaptive estimation approach coupled with an unscented Kalman filter. This approach works reasonably well but
requires that the area-to-mass ratio is knowna priori.
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Filtering algorithms for state estimation, such as the extended Kalman filter (EKF),Jazwinski (1970) the Unscented
Kalman filter (UKF)Julier et al. (2000) and particle filtersGordon et al. (1993) are commonly used to both estimate
hidden (indirectly observable) states and filter noisy measurements. The basic difference between the EKF and the
UKF results from the manner in which the state distribution of the nonlinear models is approximated. The UKF,
introduced by Julier and Uhlmann,Julier et al. (2000) uses a nonlinear transformation called the unscented transform,
in which the state probability density function (pdf) is represented by a set of weighted sigma points. When the
sigma points are propagated through the nonlinear system, the posterior mean and covariance are obtained up to the
second order for any nonlinearity. The EKF and UKF assume that the process noise terms are represented by zero-
mean Gaussian white-noise processes and the measurement noise is also represented by zero-mean Gaussian random
variable. Furthermore both approaches assume that thea posteriori pdf is Gaussian in a linear domain. This is true
given the previous assumptions but under the effect of nonlinear measurement functions and system dynamics the
initial Gaussian state uncertainty may quickly become non-Gaussian. Both filters only provide approximate solutions
to the nonlinear filtering problem, since thea posteriori pdf is most often non-Gaussian due to nonlinear effects. The
EKF typically works well only in the region where the first-order Taylor-series linearization adequately approximates
the non-Gaussian pdf. The UKF provides higher-order moments for the computation of thea posteriori pdf without
the need to calculate Jacobian matrices as required in the EKF. The orbital dynamics and measurement models used
for RSO orbit determination are highly nonlinear; thus, the UKF is used to provide a numerical means of estimating
the states of the RSO.

This work studies the problem of orbit determination from angles measurements using an UKF. Two examples
are investigated, the first is a LEO orbit and the second is a highly eccentric GTO orbit. Simulations are shown to
highlight the filter performance in both cases. The organization of the paper is as follows, first a review of the UKF
is provided. Following this astrometric observations are discussed and then a dynamic force model is provided. Solar
Radiation Pressure and drag force models are then discussed and finally simulation examples are provided followed
by a conclusion.

2. Unscented Transformation

The UKF, introduced by Julier and Uhlmann, Julier et al. (2000) uses a nonlinear transformation called the scaled
unscented transformation, in which the state probability distribution is represented by a set of weighted sigma points,
which are used to parameterize the true mean and covariance of the state distribution. When the sigma points are
propagated through the nonlinear system, the posterior mean and covariance is obtained up to second order for any
nonlinearity.

Consider the following nonlinear system and measurement model:

xk+1 = f(xk) + zk (1a)

ỹk = h(xk) + vk (1b)

wherezk andvk are zero-mean Gaussian noise processes with covariancesQ andR, respectively. The state vector is
redefined in the UKF approach by augmenting the state vector to include noise variables, where the augmented state
vector is defined byxa

k = [xT
k zT

k vT
k ]T and the augmented state vector has dimensionNa = N + q + l. All random

variables in the UKF are assumed to be Gaussian random variables. Therefore one can think of a joint distribution
for the random variables, equivalent to the distribution ofxa

k , defining a multivariate Gaussian distribution given by
w(xa

k) = w(xk, zk, vk). Then the joint distribution is approximated byw(xk, zk, vk) ∼ N(xa
k , Pa). The mean augmented

vectorxa
k can written asµa = [µT 0T

l×1 0T
q×1]

T , whereµ is the state estimate. The covariance matrix,Pa, for the joint
distribution can be written as

Pa =





P Px z Px v

Pz x Q Pz v

Pv x Pv z R



 (2)

Then the distribution is approximated as a set of symmetric selected scaled sigma points. The sigma points are
selected such that they are zero-mean, but if the distribution has meanµ, then simply addingµ to each of the points
yields a symmetric set of 2Na points having the same covariance as the initial Gaussian distribution Julier et al. (2000).
The sigma points are selected to be along the principal axis direction of the Gaussian distributionw(xa

k) or along the

2
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eigenvector directions ofPa
k . Then the augmented state vector and covariance matrix is constructed by using the

following sigma points

σk ← 2Na columns from
√

(na + λ)Pa
k (3a)

χ
a
k(0) = µk (3b)

χ
a
k(i) = σk(i) + µk (3c)

Therefore given anNa ×Na covariance matrixPa
k , a set of 2Na sigma points can be generated from the columns of

the matrices
√

(Na + λ)Pa
k , where

√
M is shorthand notation for a matrixZ such thatM = Z ZT . Using the notation

of the augmented state vector the sigma point vector can be written as

χ
a
k(i) =





χ
x(i)
χ

z(i)
χ

v(i)



 (4)

Then, given that these points are selected to represent the distribution of the augmented state vector, each sigma point
is given a weight that preserves the information contained in the initial distribution:

Wmean
0 =

λ

N + λ
(5a)

Wcov
0 =

λ

N + λ
+ (1− γ2 + ξ) (5b)

Wmean
i = Wcov

i =
λ

2(N + λ)
(5c)

whereλ = γ2Na + κ − Na includes scaling parameters. The constant parameter controls the size of the sigma point
distribution and should be a small number 0≤ γ ≤ 1, andκ provides an extra degree of freedom that is used to fine-tune
the higher-order moments;κ = 3− Na for a Gaussian distribution, alsoξ is a third parameter that further incorporates
higher-order effects by adding the weighting of the zeroth sigma point to the calculation of the covariance; noteξ = 2
is the optimal value for Gaussian distributions.

3. Astrometric Observation Model

Consider observations made by a optical site which measures azimuth and elevation to an RSO. The common
terminology associated with this observation is given by,dI is the position vector from the observer to the RSO,rI

is the position of the RSO in inertial coordinates,RI is the radius vector locating the observer,α andδ is the right
ascension and declination of the RSO, respectively,θ is the sidereal time of the observer,λ is the latitude of the
observer, andφ is the east longitude from the observer to the RSO. The fundamental observation is given by

dI = rI − RI (6)

In non-rotating equatorial (inertial) components the vectordI is given by

dI =





x − ||RI || cos(θ) cos(λ)
y − ||RI || sin(θ) cos(λ)

z − ||RI || sin(λ)



 (7)

The conversion from the inertial to the observer coordinate system (Up-East-North) is given by




ρu

ρe

ρn



 =





cos(λ) 0 sin(λ)
0 1 0

− sin(λ) 0 cos(λ)









cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1



dI (8)

3
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The angle observations consist of the azimuth, az, and elevation, el. The observation equations are given by

az= tan−1

(

ρe

ρn

)

(9a)

el = sin−1

(

ρu

‖dI‖

)

(9b)

The az and el angles are used to defined the location of the RSO in the local sky and is used to determine if the RSO
is over the horizon by defining a minimum el angle. For the simulations considered in this paper observations are
required to satisfy el> 20 Degs. In most cases angle observations are reported in right ascension and declination
angles

RA = tan−1

(

dI(2)
dI(1)

)

(10a)

DEC= sin−1

(

dI(3)
‖dI‖

)

(10b)

When the RSO is over the horizon, sky is dark, and the RSO is not eclipsed by earth Eq. 10 is used to calculate angle
observations of the RSOs.

4. Orbital and Attitude System Model

In this paper the position and velocity of an Earth orbiting RSO are denoted byrI = [x y z]T andvI = [vx vy vz]T ,
respectively. The equations of motion of the RSO are given by

r̈I = −
µ

r3
rI − aJ2 + aI

srp + aI
drag (11)

whereµ is the gravitational parameter of the Earth,r = ‖rI‖, aJ2 is the gravitational perturbation due to non-symmetric
distribution of mass along the lines of latitude of the Earth andaI

srp represents the acceleration perturbation due to SRP,
which will be discussed in detail in the following section. The acceleration due to theJ2 effect is given by

aJ2 =
3
2

J2

(

µ

r2

)

(

R⊕
r

)2

















(

1− 5
( z

r

)2
)

x
r

(

1− 5
( z

r

)2
)

y
r

(

3− 5
(z

r

)2
)

z
r

















(12)

whereJ2 = 1.082 626 683× 10−3 is the coefficient for the second zonal harmonic andR⊕ = 6, 378.137 km is the
mean equatorial radius of the Earth.

5. Solar Radiation Pressure

For higher altitude objects (≥ 1,000 km) SRP represents the primary non-conservative perturbation acting on
RSOs. Because SRP depends upon the RSO’s position and orientation, the position and attitude dynamics are thus
coupled. The acceleration due to SRP is computed as a function of the total solar energy impressed upon exposed
RSO surfaces that are reflected, absorbed and reradiated. The rate at which radiant energy is incident on an element
of areadA is a function of angle between the normal todA, un, and the Sun directionusun. The power of incident
radiant energy is given by

PI =
Φsun,tot

(d/d0)2
(un · usun) dA, (13)

4
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whereΦsun,tot is the average incident radiant flux density from the Sun at 1 AU, given byΦsun,tot = 1, 367 W/m2.
Therefore the energy flux at any distanced is given byΦsun,tot/(d/d0)2 whered0 = 1 AU. The reflected radiation will
have the following diffuse and specular power:

PD = Cdiff
Φsun,tot

(d/d0)2
(un · usun) dA (14a)

PS = Cspec
Φsun,tot

(d/d0)2
(un · usun) dA, (14b)

where the incident solar radiant energy is accounted for in three terms: the absorbed energy,Cabs, the specularly
reflected energyCspec, and the diffusely reflected energy,Cdiff, which yields

Cabs+Cspec+ Cdiff = 1. (15)

The elemental force ondA can be written in three terms: incident force,dFI , specular reflection force,dFS , and
diffuse reflection force,dFD. The incident force accounts for force due to the three termsCabs, Cspec, andCdiff, since
for each term the radiant particle is at least brought to rest before being absorbed or reflected. Therefore,dFI accounts
for the transfer in momentum to bring a radiated particle to rest. The force term for diffuse and specular reflectance
accounts for the momentum transfer due to reflection. The momentum contribution due to incident energy is in the
opposite direction of the normal, given by

dFI = −
PI

c
un. (16)

The force exerted by specularly reflected energy is in the direction of specular reflection which is given by reflecting
the vectorusun about an axis defined by the directionun. Then the force exerted by specular reflection is given by

dFS =
PS

c
[2 (un · usun) un − usun] . (17)

Diffusely reflected energy will reflect equally in all directions and the resulting force will be in the normal direction
due to symmetric components canceling out. For surfaces obeying Lambert’s cosine law of diffuse emission the
diffuse term will be Ashikmin and Shirley (2000)

dFD =
2
3

PD

c
un, (18)

where the factor23 accounts for the portion of energy that is reflected in the normal direction. Then the force on an
element of area is given by

dF = dFI + dFS + dFD. (19)

The force acting on a body due to solar radiation pressure can be determined by integrating over the Sun exposed
surface area, given by

F =
∫

sun
(dFI + dFS + dFD) . (20)

For a spherical body this integral is calculated over the Sun exposed area. The result is given by

F = − Φsun,tot

c(d/d0)2
A

[

1+
2
3

Cdiff

]

usun. (21)

This equation can be rewritten in terms of albedo

F = − Φsun,tot

c(d/d0)2
CrAusun, (22)

whereCr = 1+ 2
3Cdiff.Finally the acceleration can be written as

aI
srp = −

Φsun,tot

c(d/d0)2

CrA
m

usun, (23)

where SRP albedo area-to-mass ratio is defined byα = CrA
m .
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(a) Scenario 1 (b) Scenario 2

Figure 1: Orbits Considered in both Scenarios

6. Atmospheric Drag

In this section, discussed a very simple but instructive atmospheric drag model. The planar equations of motion
for a LEO object affected by nonconservative atmospheric drag forces are given byVallado (2007)

aI
drag = −

1
2

CdA
m
ρv2

rel
vrel

|vrel|
(24a)

ρ = ρ0e−
(r−R⊕ )

h (24b)

whereCd is the coefficient of drag,A is the cross-sectional area,m is the mass of the object, andρ is the atmospheric
density at a given altitude. The atmospheric density model is assumed to be an exponential model with reference
densityρ0. It is also worth noting that thevrel is not the velocity state vector, but rather the velocity relative to the
Earth’s atmosphere. For simulation purposes, the value of the ballistic coefficient,β = CdA

m , is chosen to be 1.4 which
is consistent with a HAMR objectT. Schildknecht (2008).

7. Simulation Results

Two simulation scenarios are presented to show the performance of the UKF in determining the orbit of an RSO
angles observations. For the first scenarios the RSO is in a Low Earth Orbit with orbital elements given bya =
6778.0 km, e = 0, i = 0 deg,ω = Ω = 0.0 deg andM0 = 119.6798 deg. The second scenario is geosynchronous
Transfer orbit with orbital elements given bya = 24582.00 km, e = 0.72429,i = 0 deg,ω = Ω = 0.0 deg and
M0 = 91.065 deg. The simulation epoch is 15-March-2010 at 04:00:00 GST.

Angle observations are simulated using the Maui Ground Based-Electro-Optical Deep Space Surveillance sensor
as the ground station (20.71◦ North, 156.26◦ West, 3,058.6 m altitude). Measurements are corrupted by zero-mean
Gaussian white noise with standard deviations of 1 arc-seconds on the right ascension observation, 1 arc-seconds
on the declination observation and 0.1 for the brightness magnitude. Observations are available every 20 seconds
throughout the 10 days long simulation when RSO is over the horizon, sky is dark, and the RSO is not eclipsed by
earth.

7.1. Scenario 1

The First scenario considered a LEO RSO. The observation time intervals can be seen from Figure 3, as the RSO
becomes visible for el angles greater then 20 Degs. Figure 2 shows the observation geometry and since the first
scenario considers a LEO orbit, observations are only possible for short portions of the orbit as seen in figure 7. From
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(a) Pass of RSO Over the Ground Site
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(b) Orbital Position During Observations

Figure 2: Scenario 1 Passes of RSO Over Ground Site and portions of orbit that are observed.
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Figure 3: Scenario 1 Az and El Measurement Satisfying El Constriants

Figure 7 we see the observable portions of the orbit plotted in Earth Centered Earth Fixed coordinated and although
the RSO makes many pass over the ground site the individual observations tracks are small and do not cover a large
portion of the RSOs orbit. Figure 4 shows the position variance for range, in-track, and cross-track directions over
time. From this figure we can see the range directions has the highest variance and therefore highest uncertainty. This
is due to the fact that the angles measurement are not very sensitive to range since they measure the RSO’s location in
the sky and not the distance to the observer.

7.2. Scenario 2

The second scenario considered a GTO RSO. The observation time intervals can be seen from Figure 5, as the
RSO becomes visible for el angles greater than 20 Degs. Figure 7 shows the observation geometry and since the
second scenario considers a GTO orbit observations are sampled for a larger portion of the RSO’s orbit and since the
RSO has a more eccentric orbit, larger variations in range are observed as seen in figure 7.2. From Figure 7.2 we see
the observable portions of the orbit plotted in earth centered earth fixed coordinates and the RSO make fewer passes
as compared to the LEO scenario. Figure 6 shows the position variances for range, in-track, and cross-track directions
over time. The difference between the in-track and cross-track versus the range uncertainty is not as great as the LEO
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Figure 4: Range, In-Track, and Cross-Track Variances Over Time for Scenario 1
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Figure 5: Scenario 1 Az and El Measurement Satisfying El Constriants

scenario and this is due to the fact the the GTO scenario has a higher eccentricity and therefore large range variation
in range.

8. Conclusion

This paper presented an Unscented Kalman filter for angles only orbit determination. Two scenarios were studied,
the first considered a LEO orbit and the second considered a GTO orbit. For LEO orbit there are more observation
opportunities but the observation tracks are over short portions of the RSO’s orbit. For GTO orbit the observation
opportunities are less but the tracks span large portions of the orbit. The GTO orbit have larger range variations
since they typically have large eccentrics, needed to transfer a payload form LEO to GEO, and this creates greater
observability in range. Finally good filter performance was shown in both scenarios and future work will considered
the estimation of the SRP albedo area-to-mass ratio and the ballistic coefficient along with the RSO’s positions states.
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Figure 6: Range, In-Track, and Cross-Track Variances Over Time for Scenario 2
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Abstract

Atmospheric density and drag coefficient are the two largest sources of error in calculating the aerodynamic forces on a
satellite in an orbit between 150 and 1000 km. Conjunction analysis uses a constant drag coefficient to predict the orbit
for most satellites. This use of a constant drag coefficient can quickly introduce orbit prediction errors on the order
of hundreds of meters to a kilometer. To accurately determine and predict the orbit path of a satellite, both density
modeling and drag coefficient modeling need to be improved. This research concentrates on modeling drag coefficient.
The computational Direct Simulation Monte Carlo (DSMC) code DS3V (Direct Simulation Three-Dimensional Visual
Program) is used to compute drag coefficients. The effectiveness of DS3V in simulating quasi-specular and partial
energy accommodation gas-surface interactions is examined using analytical solutions for a sphere and cylinder. The
sensitivity of drag coefficient to various input parameters is also examined. Result validate the ability of DS3V to
simulate quasi-specular and partial energy accommodation gas-surface interactions and also show that developing
drag coefficient models using the DSMC technique is highly feasible.

Keywords: Direct Simulation Monte Carlo, drag, DS3V, modeling, gas-surface interactions

1. Introduction

1.1. Drag Theory
Atmospheric drag is a major factor in predicting the orbit of a satellite in the extreme upper atmosphere. Equation

1 describes the theoretical model used for satellite drag calculations.

~adrag = −
1
2
ρ

CDA
m

v2
rel
~vrel

|~vrel|
(1)

Where ~adrag is the acceleration due to drag, ρ is the atmospheric density, CD is the satellite drag coefficient, A is the
satellite drag area, m is the mass of the satellite, and ~vrel is the relative velocity of the satellite with respect to the
atmosphere. For satellites with compact shapes, like spherical and cylindrical satellites, the atmospheric density and
the drag coefficient are the biggest sources of error. For non-primitive satellites with complex geometries, the drag
area adds a certain level of uncertainity in modeling accelerations due to drag. Neutral wind in the atmosphere is also
a cause of uncertainity in the calculation of aerodynamics forces. Winds on the order of 1km/s have been observed
at high latitudes during strong geomagnetic storms (Marcos et al., 2007). However, for the purpose of this study the
neutral winds have been neglected.
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1.2. Atmospheric Density Models

Atmospheric density and satellite drag coefficient are two unknowns in a single equation, as seen in Equation 1,
and are therefore intertwined and cannot be easily separated. Typically, density models have been updated by using
spherical calibration spheres at different altitudes and using a constant drag coefficient for these spheres to fit densities
to observed orbital data. This use of a constant drag coefficient induces errors in the density estimates derived from
these empirical density models.

The High Accuracy Satellite Drag Model (HASDM) developed by the Air Force Space Battle Lab estimates and
predicts a dynamically varying global density field using a dynamic calibration of atmosphere (DCA) algorithm to
solve for the real-time phases and amplitudes of the diurnal and semidiurnal variation of the upper atmospheric den-
sity (Storz et al., 2002). HASDM uses objects with compact shapes and drag coefficients that vary with altitude to
derive density corrections using orbital drag data. The use of drag coefficients that vary with altitude fail to account
for density variations along the orbit of the satellite.

Wright (2003) and Wright and Woodburn (2004) recently developed a technique for real-time estimation of at-
mospheric density and ballistic coefficient as a part of the orbit determination process. Wright’s technique for simul-
taneously estimating real-time atmospheric density and ballistic coefficient provides an advantage over the standard
techniques of estimating only ballistic coefficient or drag coefficient individually. The density and ballistic coefficient
corrections are modeled as exponential Gauss-Markov processes, which determine the density correction at any given
time step as a function of corrections from previous time steps. The technique was recently validated and successfully
used by McLaughlin et al. (2011) for CHAMP and GRACE satellites.

The state-of-the-art empirical density models show good statistical agreement with densities derived from ac-
tual spacecraft data during quiet times but are limited in advancing our understanding of the physical processes in
the upper atmosphere. The physics based Global Ionosphere-Thermosphere Model (GITM) (Basis of the IMPACT
project, www.impact.lanl.gov) enables us to answer important physics questions regarding the coupling between space
weather, upper atmospheric density, and orbital drag by accurately describing the energy deposition and cooling dur-
ing space weather events. However, the model is allowed to evolve using physical relationship and phenomenon using
the initial and boundary conditions. Therefore, it is important to validate the model by comparing the model output
(total density, constituent densities, and atmospheric translational temperature) with trusted empirical models.

1.3. Projected Drag Area

The projection area, A, for a satellite is a function of the geometry, and the attitude of the satellite relative of the
free-stream. This area remains constant for satellite with primitive geometries such as a sphere or a cylinder flying
in an arrow orientation. However, most satellite in low-Earth orbit (LEO) do not have primitive but have complex
geometries and require attitude data for accurate estimation of drag area. Since the drag coefficient of a sphere and
a cylinder in arrow orientation is insensitive to projected drag area, the validation for the DS3V code is done using
spherical and cylindrical satellites.

1.4. Drag Coefficient

The drag coefficient of a spacecraft in LEO is a strong function of the way the free-stream molecules interact with
the surface of the spacecraft, the orientation of the spacecraft relative of the atmosphere, spacecraft geometry, the
velocity of the spacecraft relative to the atmosphere, the chemical composition of the atmosphere, the atmospheric
temperature at the spacecraft location, and the surface properties of the spacecraft. In the realm of spacecraft dynamics
and orbit determination, the drag coefficient can be referred to in three distinct ways: (i) the physical drag coefficient,
(ii) the fitted drag coefficient, and (iii) the fixed drag coefficient. The physical drag coefficient is determined by the
exchange of momentum by the free-stream atmospheric molecules with the spacecraft surface (Moe et al., 2012).
On the other hand, fitted drag coefficients are estimated as part of an orbit determination process and fixed drag
coefficient is a constant value of CD. Fitted drag coefficients are specific to the atmospheric model used and carry
along the limitations of the atmospheric model and also frequently absorb other force model errors. Throughout this
document, the term drag coefficient will refer to physical drag coefficient, unless stated otherwise.
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1.4.1. Energy-Accommodation Coefficient
Drag coefficient of a satellite is a strong function of how the incident free-stream molecules interact with the sur-

face of the spacecraft. An important parameter that describes this interaction is the energy accommodation coefficient.
Energy accommodation is defined as the fraction of the kinetic energy lost by the molecules incident on the spacecraft
surface before reemission. The formal definition of energy accommodation is given later in Equation 2.

Measurements from pressure gauges and mass spectrometers flown on satellites have shown that surfaces of satel-
lites orbiting in LEO are covered with a layer of adsorbed atomic oxygen and its reaction products (Moe et al., 1969;
Hedin et al., 1973; Moe et al., 1998). Molecules striking contaminated surfaces have been observed to have high
energy accommodation coefficients and be reemitted with a diffuse (Maxwellian) angular distribution (Stickney and
Hurlbut, 1963; Kostoff et al., 1967).

Empirically determined energy accommodation coefficients as a function of altitude for solar-maximum and solar-
minimum conditions for satellites orbiting in LEO are provided by (Moe et al., 1995; Bowman et al., 2005; Pardini et
al., 2010). Recently, a semi-empirical model for satellite energy accommodation coefficients was developed (Pilinski
et al., 2010). Since the empirical NRLMSISE-00 density model was used to map average atmospheric properties as a
function of altitude, the energy accommodation model developed by (Pilinski et al., 2010) can be used only with the
empirical NRLMSISE00 density model and brings with it the model errors in the number density of atomic oxygen
and the free-stream atmospheric temperature. Because the focus of this study is validation of the DS3V code, the
energy accommodation coefficient was varied over its entire range from 0 to 1, and hence is not tied to a specific
model.

1.4.2. Gas-Surface Interaction (GSI) Models
Free-stream molecules that interact with a clean spacecraft surface are reflected in a specular way. However, satel-

lite surfaces in LEO are predominantly contaminated with atomic oxygen. A free-stream molecule, when interacting
with a contaminated surface, gets adsorbed by the layer of atomic oxygen, attains equilibrium with the surface, and
is reemitted with a Maxwellian or diffuse distribution. As the altitude of the satellite increases, the number density
of oxygen decreases and that of helium increases. Helium has a lower energy accommodation than atomic oxygen.
Therefore, the increase of helium in the atmosphere results in a low overall energy-accommodation, and results in the
molecules being reemitted with a Gaussian distribution about an angle between the surface normal and the specular
angle. Such a reflection is called a quasi-specular reemission first introduced by (Schamberg, 1959). Figure 1 shows
the picture representation of a diffuse (Maxwellian) or a quasi-specular reflection distribution.

Figure 1: Gas-Surface Interaction Models

1.4.3. Spacecraft Surface Temperature
The spacecraft surface temperatures for a typical surface material (aluminum, solar array, etc.) can be estimated

using the equations outlined in Brown (2002). The surface temperature can vary widely depending on the exposure
of the spacecraft to the sun. Aluminum was used for surface temperature calculations for the purpose of this study.
Temperatures calculated for an aluminium sphere using equations in Brown (2002) yielded temperatures of 465 K in
sunlight and 183 K in darkness.
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1.5. Direct Simulation Monte Carlo

The Direct Simulation Monte Carlo, DSMC, technique was developed and first applied by Bird (1994) in 1963.
The Monte Carlo method is a generic numerical method for a variety of mathematical problems based on computer
generation of random number. DSMC is the Monte Carlo method for simulation of dilute gas flows at the molecular
level. DSMC is, to date, the basic numerical method in the kinetic theory of gases and rarefied gas dynamics. The
DSMC method uses a cell and particle approach to track a system of representative molecules, while probabilistically
selecting candidates for inter-molecular collisions. Every simulated molecule represents W molecules of real gas,
where W is the statistical weight of a simulated molecule. The statistical weight typically lies in the range of 1012 to
1020 real molecules per every simulated molecule.

The computational domain is divided into small cells and molecules in each cell are tracked independently. The
position coordinates and velocity components of the simulated molecules are stored in the memory of the computer
and are modified with time as the molecules are concurrently tracked through representative collision and boundary
interactions within the computational domain. At any given time, collision probabilities are calculated and collisions
are carried out only between molecules in the same cell. The motion of the molecules and the collisions between them
are decoupled over small time steps. The time step is much smaller than the mean collision time and a typical cell
dimension is much smaller than the local mean free path (Bird, 2006).

The satellite or spacecraft geometry is inserted into flow field as a surface mesh. The mesh format differs from one
program to another. Molecules are inserted into the flow field at the local boundary temperature through the inflow
boundaries using a Maxwellian distribution in velocity. In typical DSMC simulations, like the flow over a satellite or
a vehicle in the Earths atmosphere, the computational domain is part of a larger flow environment. The boundaries of
the computational domain are therefore set to be transparent or as part of the free-stream. Molecules are allowed to
leave and enter the computational domain while varying the number of simulated molecules with time.

1.5.1. DS3V
The DS3V (Direct Simulation Three-Dimensional Visual Program) was used to model the interactions of sim-

ulated molecules with parameterized surfaces and intermolecular collision dynamics. In spite of the computation-
ally demanding nature of DS3V, it was chosen for three main reasons: (i) it is freely available on the Internet
(www.gab.com.au), (ii) it is highly reliable and has been widely used, and (iii) it is very user friendly (Graphical
User Interface). Figure 2 shows a screenshot of the 3-Dimensional DSMC program DS3V developed by (Bird, 1994).

The only computational parameter specified by the user is the initial number of megabytes to be used for
storage. The size of the cells used to discretize the computational domain is set as a function of this initial number
of megabytes defined by the user. The program sets all other computational variables automatically. However, an
optional menu is available should the user choose to define the computational parameters.

DS3V does not allow the user to explicitly specify a value of accommodation coefficient. The default is
complete accommodation. Therefore, in order to simulate partial energy accommodation, the temperature of the
spacecraft surface is set equal to the kinetic temperature of the reemmitted molecules. This forces an assumption of
single reflection of individual molecules. This mean that, once a molecule interacts with the surface of the spacecraft,
it travels a large distance before colliding with another incoming molecule and looses any chance of re-interacting with
the surface. Single reflections are dominant in free molecular flow (FMF) for simple convex geometries. However,
caution needs to be taken when dealing with concave and complex geometries. Pilinski et al. (2011) showed that the
difference in drag coefficients computed for concave geometries using single and multiple reflections is less than 1%.
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Figure 2: Screenshot of the DS3V module

2. Closed Form Analytical Equations

The energy accoommodation coefficient, α, is formally defined as:

α =
Tk,i − Tk,r

Tk,i − Tw
(2)

where Tk,i is the kinetic temperature of the incoming molecules, Tk,r, is the kinetic temperature of the reemitted
molecules, and Tw is the energy the reemitted molecules would have if they attained thermal equilibrium with the
spacecraft surface before emission. The kinetic temperature of the incident molecules can be given as:

Tk,i =
mv2

rel

3kb
(3)

where m is the mean molecular mass of the atmosphere at the satellite location, vrel is the spacecraft relative velocity,
and kb is the Boltzmann’s constant. The kinetic temperature of the reflected molecules for a monatomic species if
given as:

Tk,r = Tk,i(1 − α) + αTw (4)

The expected errors in applying Equation 4 to diatomic molecules in less than 1%. The speed ratio s is defined as the
ratio of the satellite speed to the most probable thermal speed of the ambient molecules.

s = vrelβ (5)

β =

√
m

2kbT∞
(6)

5

Los Alamos Space Weather Summer School 2012 43



where T∞ is the free-stream atmospheric temperature. The error function, erf() is defined as:

er f (s) =
2
√
π

∫ s

0
exp(−t2)dt (7)

Equation 8 defines the analytical solution for the drag coefficient of a sphere for a quasi-specular gas-surface inter-
action model with complete accommodation (α=1), originally derived by Schamberg (1959) and re-derived by Bird
(1994). In case of partial accommodation simulation with DS3V, (α ,1), the surface temperature Tw is replaced by
the kinetic temperature of the reflected molecules, Tk,r, for the appropriate value of the accommodation coefficient.
T∞ is the thermal temperature of the ambient gas irrespective of its bulk motion.

CD,sphere =
2s2 + 1
√
πs3

exp(−s2) +
4s4 + 4s2 − 1

2s4 er f (s) +
2(1 − ε)

√
π

3s

√
Tw

T∞
(8)

Equation 9 defines the analytical solution for the drag coefficient of a cylinder for a diffuse GSI with complete accom-
modation deduced by Sentman (1961).

CD,cylinder =
4
√
πs

L
D

[(2 +
1
s2 )er f (s) +

2
√
πs

e−s2
+

√
π

s

√
Tw

T∞
(9)
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3. Results

Sensitivity studies were performed to understand the variation of drag coefficient with the different input parame-
ters. Sensitivity studies were performed using the following reference values: an atmospheric temperature of 1157 K,
a surface temperature of 300 K, a relative atmospheric speed of 7590 m/s, and a molecular mass of 11.35 atomic mass
units. Different input parameters were varied one at a time in the range observed in low-Earth orbits while keeping
the other fixed at the above mentioned reference values. Figure 3 shows that the drag coefficient can vary by 2-3% as
a function of spacecraft surface temperature between day and night cycles.

Figure 3: Variation of drag coefficient of a sphere with spacecraft surface temperature

Figure 4 and Figure 5 show the variation of the drag coefficient with free-stream atmospheric temperature and
the spacecraft relative velocity respectively. Results shows strong correlation of the drag coefficient to both the free-
stream atmospheric temperature as well as spacecraft relative velocity.

Although gas-surface interactions below 500 km in altitude are dominantly diffuse in nature, the ability of the
DS3V code to simulate quasi-specular interactions was examined using a sphere for possible use at higher altitudes in
the future. Figure 6 shows that the DS3V does well in simulation quasi-specular gas surface interactions.

Figure 7 shows the ability of DSMC to compute the drag coefficient for sphere as a function of accommodation
coefficient and the sensitivity of drag coefficients to energy-accommodation. The results show that the computed drag
coefficients start to diverge from the analytical solution as accommodation coefficient goes down. This is an expected
result since as accommodation coefficient decreases, more and more of the adsorption effect is being incorporated
through a constant uniform surface temperature.

Figure 8 shows the ability of DSMC to compute the drag coefficient for a cylinder as a function of the accom-
modation coefficient. The results again show that the computed drag coefficients start to diverge from the analytical
solution as accommodation coefficient goes down. However, according to the energy-accommodation model of Pilin-
ski, accommodation coefficients vary from 0.9 to 1 at altitudes below 500 km. Therefore, it can be concluded that
DSMC performs well in explicitly computing drag coefficients for satellites at altitudes with partial accommodation.
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Figure 4: Variation of drag coefficient of a sphere with free-stream temperature

Figure 5: Variation of drag coefficient of a sphere with spacecraft relative velocity
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Figure 6: Ability of DS3V to simulate quasi-specular reflections

Figure 7: Variation of drag coefficient of a sphere with accommodation coefficient
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Figure 8: Variation of drag coefficient of a Cylinder in arrow orientation with accommodation coef-
ficient (Legend: A=Analytical, D=DSMC)

4. Conclusions

The effectiveness of the Direct Simulation Monte Carlo (DSMC) technique and the ability of the DS3V code in
computing drag coefficients for satellites in low-Earth orbit has been successfully examined. Results show a small
difference in drag coefficients for a sphere and a cylinder computed using analytical equations and the DSMC tech-
nique. Therefore, the DS3V code, inspite its limitations, does well in explicitly computing drag coefficients.

For future work, the DS3V needs to be validated using complex geometries like CHAMP and GRACE. Once
validated, the technique can be used to develop drag coefficient models for simple as well as complex geometry satel-
lites. This will allow for accurate density derivation for assimilation into density models as well as reduced satellite
conjunction errors.
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Abstract

Data assimilation methods are becoming increasingly popular to describe the observationally sparse environment in
Earth’s magnetosphere. As energetic electrons pose a number of hazards to manned and unmanned spacecraft, the
outer radiation belts are an especially high profile candidate for data assimilation techniques. Energetic electron
diffusion can be simplified with a Fokker-Plank equation, which also allows for the ability to include loss or source
terms. We use a one-dimensional radial diffusion model and a conventional Kalman filter (CKF) to describe the
energetic electron PSD for the full radial range of the outer radiation belt. Additionally, we augment the state vector
to include the magnitude of a Gaussian-shaped local acceleration term. The result of the analysis is an estimate of
electron PSD, as well as a time-dependent heating rate for specified location and width. To further constrain the
source rate parameters, such as the location and width of the acceleration region, additional analysis is performed
using the observational residual vector (or innovation vector) by quantifying the root mean square (RMS) of the
vector in a location-width parameter space. We prove the functionality of the innovation vector RMS method with
three identical twin experiments, in which the method proves robust and is able to reproduce the synthesized source
rate parameters and PSD. We then apply the method to real spacecraft observations, consisting of a five satellite
Phase Space Density (PSD) dataset (three LANL-GEO, one GPS, and POLAR) for constant first and second adiabatic
invariants, µ = 2083[MeV/G] and K = 0.03 [G

1
2 RE]. In a data denial experiment, we show that the intensity of local

heating is robust to removing satellites from the dataset. Using the satellite observations we estimate the PSD and
full source rate term (including amplitude, location, and extent of the local heating) for the entire period. Finally, we
attempt to find a correlation between the plasmapause location and the location of local heating. However, a concrete
correlation will require further investigation.

1. Introduction

The outer electron radiation belt, or outer Van Allen belt, is a donut-shaped region in near-earth space populated
by relativistic electrons which are trapped in Earths magnetosphere. The belt is restricted to a region between 3∼7
Earth radii (RE), with peaks in flux just inside of geosynchronous orbit (GEO), or near 5 RE.

The energetic electrons pose a number of hazards to manned and unmanned spacecraft(1) and overlap commonly
used orbits, such as low-Earth, Global Positioning System (GPS), and GEO. The system is extremely dynamic and un-
dergoes continuous change by various complex and not fully-understood processes, such as localized heating (source),
loss, and radial transport(18).

Yet, each individual process is difficult to quantify its unique contribution to the net electron flux. Spacecraft
that make in-situ observations to measure the total electron flux cannot observe individual processes that occur, and
thus cannot distinguish which processes contribute to the total electron flux. In short, the balance between all three

Email addresses: quintin.schiller@colorado.edu (Quintin Schiller), hgodinez@lanl.gov (Humberto Godinez)

Los Alamos Space Weather Summer School 2012

Los Alamos Space Weather Summer School 2012 51



processes is not well understood. Further complications arise from the restricted, single-point in-situ measurements
taken by spacecraft. The measurements have limited temporal and spatial coverage, resulting in an undersampled
system, and often the measurements have large uncertainties associated with them.

Attempts to model the electron radiation belt have been met with limited success. The limitations are due to
inaccurate estimates of the source, loss, and transport processes occurring in the system. Improvements on, for
example, the source term, would lead to drastic improvements on the overall understanding of the system. However,
current models are missing accurate and realistic source terms. Our objective in this paper is to use data assimilation
techniques to provide a concrete estimate of the source term. Specifically, we use a conventional Kalman filter (briefly
described in Sections 2 and 3) to estimate the magnitude, location, and width of a Gaussian source term to best match
observational data. We then verify the functionality of our method in Section 4, and use the approach with real satellite
data in Section 5.

2. Model

We use a one-dimensional Fokker-Plank equation to describe radial diffusion in L for the energetic electron popu-
lation in the outer radiation belts in phase space density (PSD) coordinates (for further discussion of phase space and
PSD coordinates, see Chen et al.; 2005; 2006 (7; 8)

δ f
δt

= L2 δ

δL

(
DLL

L2

δ f
δL

)
−

f
τ

+ S

where DLL(L, t) is the radial diffusion coefficient, τ(L, t) is the loss timescale, and S (L,T ) is the source rate. We
assume a Gaussian form for the source rate

S = Ae−
(L−LC )2

σ2

where the source location is centered at LC and has width σ and amplitude A. A Gaussian source term such as
this exists over all values in L and does not introduce artificial discontinuities which might arise in a step-like source
function.

We select a Kp dependent diffusion coefficient (6)

DLL (K p, L) = 10(0.506K p−9.325)L10

where Kp is an proxy for geomagnetic activity. We select three L-dependent loss timescales

Loss Mechanism Region Location Loss Timescale
Plasmaspheric Hiss Inside Plasmasphere L < LPP τ = 8 days (17)
Chorus Waves, etc. Outside Plasmapause LPP ≤ L < LMAX τ = 3

Kp (17; 30)
Magnetopause Shadowing Outside Last Closed Drift Shell L > LMAX τ = 1

2×Drift Period (=10 min.)

where LPP corresponds to the location of the plasmapause (LPP(Dst) = −1.57 log10(min−24,0Dst); where min−24,0Dst
represents the minimum Dst value from the past 24 hours(23)) and LMAX corresponds to the last closed drift shell as
described in Koller and Morley [2010](16), LMAX(Dst) = 6.07 × 10−5Dst2 + 0.0436Dst + 9.37. The inner and outer
boundaries, L=2 and L=10, are set to 1 × 10−16

(
c

MeV cm

)3
.

To solve the Fokker-Plank equation we use the Crank-Nicolson method (9), which is unconditionally stable and
2nd order accurate and does not need to satisfy the Courant condition (24). We select a ∆L of 0.25, comprising 32
grid points from 2≤L≤10. The initial condition is a Gaussian fit to the average of the first 20 hours of GEO data.

The resulting PSD is, in reality, a balance between radial transport, source, and loss for a specific first and second
adiabatic invariant (µ and K respectively) combination. For a discussion on adiabatic invariants, such as µ and K,
see Roederer [1970] (26). While we assume particular loss and diffusion timescales for this analysis, our results for
both the source term and for the PSD are convolved with the balance all three processes: diffusion, loss, and source.
Neither the actual observations, nor the model as we present it, can distinguish between the various processes at work,
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but only the net result of all processes in combination. Furthermore, the source rate term in our model can have a
negative value. In this case, the parameterized loss is insufficient to describe the PSD and the model uses a negative
source rate to supplement the loss. When the source rate has a positive value, it may indicate an enhancement of
acceleration mechanisms or a suppression of loss processes.

3. Kalman Filter

For a description of the Kalman filter, we turn the reader to Kalman [1960] (14), where the methodology of the
filter is detailed. Furthermore, for relevant applications of the Kalman filter in studies of the radiation belts, we
point the reader toward papers by Bourdarie(4; 5), Daae(10), Koller(15), Kondrashov(17), Maget(19), Naehr and
Toffoletto(20), Ni(21; 22), Reeves(25), and Shprits(28; 29).

Important variables are 1) The state vector, x. The first 32 components of the state vector are PSD from L=2
to L=10. The 33rd component is A, the amplitude parameter of the source term as described in Equation 2. As
the model, Equation (1), is linear in S, we simply augment the state vector with the amplitude parameter, A. 2) The
model covariance propagating matrix, Q. This variable represents degradation in the accuracy of the model as time
progresses without observations to update the state vector. For our case, we use Q = εmI ×

[
x f

i − xa
i

]
, where εm is

the uncertainty of the model. While εm is very difficult to quantify, we ambiguously set it to 300%, as we are far less
confident in the model than the observations, and 300% is 10× the model uncertainty (see below). f and a represent
where in the Kalman filter the state vector is taken from, f representing the forecast step, and a representing the
analysis step. i stands for the time step of operation and I is the identity matrix. The value of the model covariance
propagating matrix, x f

i − xa
t , is a good representation of how well the model’s forecast reproduces the observations

at the next time step. Large (small) values indicate poor (good) performance, and the confidence in the model will
decrease (increase). 3) The observation covariance matrix, R, which is defined as R = εoI × yi, where y is the
observation vector and consists of the observations available for time step i. Analysis done by Koller et al. [2007]
describes the uncertainty in the observations for a similar dataset to be 30% of the measured PSD (15), thus we choose
30% for εo, the uncertainty of the observations.

The augmented state vector is capable of estimating electron PSD and the intensity of local heating for a region
with specified, and non-changing, location and width. However, these terms are physically dynamic and change
on timescales comparable to individual storms. To constrain these parameters ’offline’, or outside of the Kalman
filter algorithm, we employ the innovation vector (or observation residual),

(
yi −Hix

f
i

)
, which represents the residual

between the observations and the model forecast state. The root mean square (RMS) of the innovation vector is
defined as

RMSINNOVATION =

√√√
1
m

T∑
i=1

(
yi −Hix

f
i

)2

where T is the total number of times steps for the period and m is the number of observations. A high (low)
innovation vector RMS indicates that the model, including the source rate parameters selected, less (more) accurately
predicts the actual observations. The most desirable innovation RMS is close to zero, as that establishes the loca-
tion/width combination that best reproduces the satellite measurements. An example of the results for a parametric
study or constant source rate parameters (amplitude, location, and width), can be seen in Figure 1. The method of
our studies is to run the Kalman filter multiple times, each with a unique source location and width, and observe the
innovation vector RMS. Schiller et al.(27) have previously performed work on this topic.

The filter is allowed a three day spin up period to generate a state which is not dependent on the initial conditions,
and then the innovation vector analysis is performed for the subsequent day. The result is an ’online’ estimate (with
time resolution equal to the resolution of the filter - 120 minutes) of the source rate amplitude, and ’offline’ estimates
(with resolution equal to the length the filter is run for - one day) of the location and width parameters. We argue
that where the global minimum is in the location-width parameter space represents the dimensions of the physical
processes occurring over that period. First, we verify the method using identical twin experiments.
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Figure 1: A model run for a simple case: a source rate term with constant amplitude, constant width (y-axis) of 0.3, and constant location of L =

5.5. The parameter space of location and width contains a large spectrum of innovation vector RMS (colored contour lines), but there is a clear
minimum at width = 0.3 and location = 5.5, the correct source rate parameters for this example.

Figure 2: The synthesized data, which ’observations’ are sampled from (4), and which the model estimates.

4. Identical Twin Experiments

The following identical twin experiments are a continuation of the work done by Schiller et al.(27). For this part of
our study, we run identical twin experiments to prove the functionality of the model. The first step of the experiment
is to synthesize a dataset to act as the ’true’ data the model is trying to recreate (see Figure 2). In this case, there
is a source term included which has constant amplitude, but changes in width and location every 3 days (Figure 3).
Observations are taken of the ’true’ data with ±10% error included (Figure 4). The observations are an attempt to
recreate a hypothetical satellite in an idealized orbit flying through the radiation belts. Using the method described
above, we attempt to recreate both the PSD for the full radial range as well as the amplitude, location, and width of
the source term. The results can be seen in Figure 5.

We choose the source location to vary minimally, never by more than 0.4L, to verify the method works even
during potentially ’worst-case’ scenarios, where the filter would have difficulty distinguishing small variations in the
parameters. The results confirm that our method works to estimate the amplitude of a constant source rate term, as
well as accurately estimates the location and width. To determine the robustness of the method to more extreme
gradients in the source term, we perform the same analysis for a source term that changes in intensity every three days
by up to a factor of 3. A visualization of the synthesized term for this experiment can be seen in Figure 6, and the
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Figure 3: A visualization of the source rate. In this case, the amplitude is set to constant (1 × 10−6) for the full period, but the location and width
change every three days.

Figure 4: The sampling from the ’true’ data (2), with ±10% error included, which are used as observations in the model

Figure 5: Results of the identical twin experiment - estimates of source rate parameters.
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Figure 6: A visualization of the entire source term with variable amplitude. The amplitude varies from 0.5e-6 to 1.5e-6.

estimated source rate parameters can be seen in Figure 7.
The results are very similar to the previous results. However, there is ∼1 day delay for the amplitude estimate to

converge on the correct value. These results agree to Daae et al. [2011], who find that the model ’forgets’ previous
states in approximately one day. More specifically, the difference between two models with drastically different initial
conditions is reduced to %15 after one day. These results confirm that the method is valid for local heating which varies
in time. However, heating rate that varies by no more than a factor of three is not physical. In the next experiment,
the intensity of local heating varies by two order of magnitude - a scenario that is more likely to be observed in the
magnetosphere. The source rate term can be seen in Figure 8, and the estimates of the source rate parameters in Figure
9.

The results for this experiment are more scattered than previous results. Generally, the model performs well with
some minor exceptions. First, it takes ∼2.5 days to converge to the largest amplitude, whereas closer to one day for the
others. Second, when the maximum source rate lowers by an order of magnitude, the subsequent estimate of location
and width is far less accurate. This is likely due to the strong gradients which occur as the high levels of PSD diffuse
radially and saturate the source term, as can be seen in Figure 10. Finally, the final period (days 16-18) is decidedly
the least accurate estimate of source location and width. Similar to the second point, this is likely due to the high
levels of PSD which occur in the source region during this period, which originate from the period of highest source
intensity (days 10-12) and continue through days 13-15. The high PSD mask any source that is occurring, and the
high PSD gradients from radial diffusion (as opposed to local heating) make it difficult for the filter to distinguish the
relative contribution of local heating.

The large absolute PSD and steep PSD gradients result in poor estimates of location and width for the last period
in the study. We suspect that, given a few more days for the PSD to diffuse away and be lost to the boundaries, the
filter would converge to the correct values of location and width, as it did for a similar period of low source rate during
days 4-6. However, despite the inaccuracies involved with estimates of source rate term parameters, the filter is able
to accurately estimate the PSD for the entire period, as seen in Figure 11. These experiments prove that the method
of innovation vector RMS in a parameter space is capable of reproducing not only parameters in the state vector, but
also parameters estimated ’offline’, such as source rate location and width.

5. Applications to Real Data

As seen in the previous section, the method estimates all three parameters for a Gaussian-shaped source rate term
- amplitude, location, and width - is also capable of reproducing synthesized PSD, both for a synthesized dataset.
The next step is to apply this method to real satellite observations. The observations themselves are described in the
following subsection, followed by a brief study to determine the robustness of the Kalman filter to different satellite
observations, and finally the results of the method applied to the satellite PSD dataset.

5.1. PSD Observations
The data used in the assimilation process is a PSD dataset provided by Yue Chen at Los Alamos National Lab(7;

8). It consists of particle measurements from five spacecraft: three LANL-GEO (97a, 1991-080, 1990-095), one
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Figure 7: Estimate of source term parameters for the identical twin experiment with variable source rate amplitude as seen in Figure 6. The top
panel shows the actual source rate amplitude in blue and the estimate of the parameter in black. The middle and bottom panels show the actual
source term location and width, respectively, in red and the estimate of the terms in black.

Figure 8: The entire source term with variable amplitude. The amplitude varies from 0.1e-6 to 10e-6. The label on the colorbar axis should read
log10(PSD*106).
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Figure 9: Estimate of source term parameters for the identical twin experiment with variable source rate amplitude as seen in Figure 6. The top
panel shows the actual source rate amplitude in blue and the estimate of the parameter in black. The middle and bottom panels show the actual
source term location and width, respectively, in red and the estimate of the terms in black.

Figure 10: Synthesized data from the identical twin experiment which includes the source term which varies by two orders of magnitude.

Figure 11: The difference between the log of the PSD estimate and the log of the true PSD state, with source rate from Figure 8 included.
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Figure 12: The full dataset in consideration, including observations from three LANL-GEO, POLAR, and a GPS spacecraft.

Global Positioning System (GPS-ns41), and POLAR. The particle detectors onborad the satellites are: LANL-GEO
- Synchronous Orbit Particle Analyzer (SOPA) instrument (2), GPS - Burst Detector Dosimiter (BDD) II (11), and
POLAR - Comprehensive Energetic Particle and Pitch Angle Distribution Experiment (CEPPAD) (3). In total, 87
days of data are available from June 30th to October 24th, 2002. Data from all spacecraft are averaged to the center
of each discrete mesh grid point with dimensions 0.25[L] x 120[min]. The conversion from flux to PSD is done for
constant first and second adiabatic invariants, µ = 2083[MeV/G] and K = 0.03[G

1
2 RE] respectively, and is performed

in two steps following Chen et al. [2005, 2006] (7; 8) and Hilmer et al. [2000] (12). These particles correspond to 1
MeV at GEO. The entire dataset can be seen in Figure 12.

5.2. Data Denial Experiments

A very brief study was conducted to determine the affect different satellites have on the overall PSD estimate of
the state space. To conduct this experiment, a period from DOY 211 to 233, 2002 was reanalyzed with the augmented
state space vector (to estimate the amplitude of the source rate term). The location was set to L=5.5, with width set
to 0.3. These parameters were constant over the interval. A comparison was done between the reanalysis using all
satellite observations; the reanalysis using only POLAR and GEO spacecraft (Figure 14); and the reanalysis using
POLAR, the GPS spacecraft, and two of the three GEO spacecraft (Figure 13). The results for each are as expected:
the larges differences in PSD occur where the data from the absent spacecraft is no longer available.

For the data denial experiment with the GEO spacecraft removed, the differences occur between the GPS obser-
vations and the magnetopause. The largest differences occur between DOY 225 and 230, during an enhancement in
the radiation belts. During this time, the differences are magnified when 97A provided the only data for a particular
observation time step, or when 97A observed significantly different PSD than the other GEO spacecraft for the same
observation time step. This might be due to anisotropies in the electron drift population (where one GEO space-
craft will see high PSD, while other GEO spacecraft will be in regions of low PSD), localized acceleration occurring
preferentially closer to one of the GEO spacecraft, injections of electrons from the tail region, or other physical or
numerical causes. The variations in PSD can reach two orders of magnitude during this period of enhanced radiation
belt intensities.

The experiment with data from the GPS spacecraft removed reveals similar results. The differences occur where
the GPS spacecraft makes its observations, between L=4∼5. The largest differences occur during the same period
of enhanced radiation belt intensities - DOY 225 to 230. However, the analysis with the GEO spacecraft removed
sometimes over-predicted and sometimes under-predicted the PSD. The results of the analysis with the GPS data
removed show consistent under-predicting during the period before the enhancement, and consistent over-predicting
during the enhancement. This suggests that the GPS data was pulling the state vector up in the days before, and pulling
the state vector down during the enhancement. Variations for this experiment also ranged to two orders of magnitude.

Whereas the previous studies observed the changes in PSD from the removal of one of the satellites in the dataset,
a different analysis was performed to measure the effects on the estimate of the source rate amplitude. This analysis
was performed for five consecutive periods during the interval from DOY 211 to 297, 2002, each with different source
location and widths (as outlined in Schiller et al. [2012]). The results of this experiment can be seen in Figure 15.
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Figure 13: Top panel: Reanalysis with observations from all five spacecraft. Middle panel: Reanalysis performed with all observations except
LANL-GEO 97A. Bottom panel: The log difference between the the two reanalyses. The dashed line corresponds to the location of the estimatable
source term.

Despite the variations in PSD estimate, the estimate of the source rate amplitude is relatively unaffected by the removal
of either dataset. The basic structure and magnitudes are preserved for all three cases. These results suggest that the
PSD is sensitive to the data included in the observations, whereas the estimate of some source rate parameters is robust
to data denial.

5.3. Application of Method to Real PSD Observations

We apply the methods described in the previous sections, namely Section 4, to the real dataset described in Section
5.1. The results are depicted in Figure 16. The authors warn the reader that the PSD estimate near DOY 280 may
not be physical, as there are only a few examples of high energy electrons penetrating into the slot region (below
L=2-3). It is likely that the high PSD in the slot region is a result of numerics, as the source location is estimated to
be very low: between L=3 and L=4 for multiple days. Such a source term could numerically populate the slot region
as there are no observations inside of L=4 to decrease the filters estimate of PSD there. Despite this potential issue,
the reanalysis agrees strongly with the observations. The comparison between the two can be seen in Figure 18. The
vast majority of the observations are recreated within a factor of two. The largest differences between the reanalysis
and the observations occur near the outer boundary, where we assume all particles are lost to the magnetopause.
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Figure 14: Top panel: Reanalysis with observations from all five spacecraft. Middle panel: Reanalysis performed with all observations except GPS.
Bottom panel: The log difference between the the two reanalyses. The dashed line corresponds to the location of the estimatable source term.
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Figure 15: The estimate of the amplitude parameter for reanalysis performed with observations from all five spacecraft (top panel), all spacecraft
except for one LANL-GEO (97A - middle panel), and all spacecraft except for GPS (bottom panel). The dashed line corresponds to the location of
the estimatable source term.
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Figure 16: The results of the reanalysis and parametric study on actual observations, as depicted in Figure 12. The top panel shows the PSD
estimate with observations overlain, with source term included with parameters from the following panels.. The second panel shows the estimate
of the source rate amplitude given the locations and widths described in the following panels. The PSD and amplitude estimates have temporal
resolution of 120 minutes, as they are ’online’ estimate directly from the state vector. The third panel depicts the location parameter of the source
term. The last panel represents the width parameter of the source term. The width/location combination was derived from the parametric study as
described in Section 3 and performed in Section 4.
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Figure 17: A visualization of the total source rate term, including location, width, and magnitude (color).
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Figure 18: The differences between the log of the estimated PSD and observed PDS at each observation. White indicates a very good match, intense
cooler colors an underprediction by the model, and intense warmer colors an overprediction by the model.

5.4. Attempt to Find Correlation Between Source Location and Plasmapause

Whistler mode chorus waves, for example, are believed to be a major contributor in accelerating lower energy
electrons to relativistic levels [e.g. Horne et al., 2007 (13)]. These waves are also believed to occur just outside the
plasmapause(13). Thus, one would expect to see a correlation between the source location (region of high chorus
wave activity), and the plasmapause. The daily averaged plasmapause, from the Dst-dependent plasmapause model
by O’Brien and Moldwin(23), and the estimated source location for the same period, can be seen in Figure 19 in red
and black, respectively. Additionally, we calculate the correlation coefficient between the two. Since there may be
some delay between the timing of local enhancements and the plasmapause location, we also calculate the correlation
coefficient incorporating up to an 85 day delay. These results can be seen in Figure 20.

As can be seen in the figure, there does not seem to be any correlation, as the correlation coefficient is not higher
than 0.4, except for a lag of -70 days where it is only slightly higher than 0.5. (Interestingly, there is a 27-day period to
oscillations in the correlation coefficient lag. This was not unexpected, as various solar wind features can have 27-day
periods [e.g. CIRs], which directly affect the configuration of the magnetosphere.) The likely reason for no apparent
correlation is that we use a daily averaged plasmapause location. The daily averaging washes out any variations which
occur on a smaller timescale. These variations can be significant, varying up to L=3 in a matter of hours. Thus, we
conclude that the daily resolution at which we are calculating estimates of the source location is too coarse to resolve
a plasmapause correlation, which likely happens on a timescale much less than a day.
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Figure 19: The location of the daily averaged plasmapause location (red) and the estimate of source region location (black).
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Figure 20: The correlation coefficient between the estimated source location and daily averaged plasmapause location (black and red, respectively,
from Figure 19, as a function of lag between the two.
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6. Summary and Conclusions

In this paper, we discuss the specifics of estimating source rate parameters in the outer radiation belt electrons
using data assimilation. We assume a Gaussian-shaped source region, an assumption which should be improved upon
in future studies, and attempt to estimate its radial extent, center location, and intensity.

The state vector of the model consists of the phase space density (PSD) for the full radial range and the amplitude
parameter of the source rate term. These variables are estimated ’online’, that is, they are direct outputs and have
temporal resolution equal to the filter. The remaining source rate parameters, namely the location and width of the
source region, are estimated ’offline’. To perform the offline estimation, we employ the innovation vector (or prefit
observation residuals) to quantify the performance of the model to reproduce observations for a given location/width
pair. We run the model over a large parameter space (often a few hundred runs), and calculate the root mean square
(RMS) of the summed innovation vector. The minimum in the RMS parameter space indicates the location/width pair
which best predict the observations, and thus are assumed to be the dimensions of the source region.

In the first part of our study, who’s purpose is to verify the functionality of our model, we sample a synthesized
dataset with a hypothetical spacecraft in an idealized orbit, which are used as the observations (a.k.a. an identical
twin experiment). We then measure the performance of the model by quantifying how well the model reproduces the
synthesized state. Three experiments are performed, each in increasing complexity. The model performs very well
for the first two, accurately reproducing the PSD and the source rate parameters (amplitude, width, and location). The
model begins to break down under the conditions imposed for the third experiment, but only when the existing PSD
overwhelms the magnitude of the source rate. Overall, the method performs well in estimating PSD and all three
dimensions of the Gaussian source term.

In the second part of our study, we apply this technique to actual satellite PSD observations. We first determine
that PSD and source rate parameter estimation is relatively robust to the dataset. To do this, we remove one of the
satellites from the observations and analyze the results. Since the satellites directly observe PSD, there are significant
changes to the PSD estimate when denying a satellite’s observations in the reanalysis. However, the estimate of source
parameters, namely the intensity of the source region, is robust to which observations are included.

The PSD observations we use are from five satellites: POLAR, one GPS, and three LANL-GEO. We are able to
estimate PSD and intensity of local heating at relatively high temporal resolution. We are also able to estimate the
location and width of the source region at daily cadence. Using this method, we are able to more accurately predict
observed PSD measurements. Unfortunately, we suspect that daily cadence is too coarse to perform any rigorous
analysis between the location of the source region and potentially relevant regions in space (e.g. the plasmapause).
We do, however, see a 27-day period in the correlation between the plasmapause and the source region, verifying that
the solar wind has a strong affect on the plasmapause, the source region, or both.
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Abstract

The plasma andmagnetic field structure during the substorm growth phase is crucial to understanding development
and initiation of substorms. In this study, we first established empirically the plasma sheet pressure distributions by
fitting the Geotail and THEMIS pressure for the growth phase of isolated substorms (at least 240 min from previous
onset). Nonlinear least square fitting was achieved with a high correlation coefficient of 0.82. We then computed the
3-D magnetic field in force balance with the fitted pressure. The pressure P shows strong dawn-dusk asymmetry with
higher P in the post-midnight sector atr > 10 RE, but P becomes higher in the pre-midnight sector inside r∼10 RE.
These features are consistent with previous observational studies. The radial pressure gradient along midnight is at
least a factor of 2 larger than the previously observed quiet-time gradient for Kp=1. The force-balanced magnetic
field lines are more stretched compared with those of quiet-time and of T89 for Kp=3, and are twisted azimuthally
toward dawn close to Earth and toward dusk further away from the Earth. The westward tail current peaks near
midnight in the tail and the peak moves towards dusk with decreasing radial distance from the Earth inside r∼10 RE.
The corresponding field-aligned current (FAC) pattern has region-1 sense FACs in the tail plasma sheet and region-2
FACs closer to the Earth. The region-2 FACs are rotated from their quiet-time picture, upward current dominating the
midnight-to dawn MLTs and downward current from dusk to noon MLTs.
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1. Introduction

The substormis one of the most interesting and complex phenomena in space physics. It is a process of storage
and sudden release of energy in the Earth’s magnetosphere. Its development has generally been categorized into three
phases: growth, expansion, and recovery. During the growth phase, the auroral oval expands equatorward, the aurora
and electrojet gradually intensify, the magnetotail field lines become stretched as the solar wind energy is stored there.
The cross-tail current sheet during the growth phase thins and the current is intensified compared to quiet time (e.g.,
Sergeev et al., 1990, 2011;Sanny et al., 1994). In order to understand the development and initiation of substorms, one
needs to know the plasma and magnetic field structure during the substorm growth phase. However current models
[either empirical or magnetohydrodynamic (MHD)] are unable to accurately describe the magnetic field during the
growth phase. This is because empirical models, such as Tsyganenko 96 magnetic field model (T96) (Tsyganenko,
1995;Tsyganenko and Stern, 1996), were obtained from statistical averages and work well only for quiet/not too
disturbed times. On the other hand, global MHD models, such as the Block Adaptive Tree Solar Wind Roe Upwind
Scheme (BATS-R-US) (Powell et al., 1999), have difficulty reproducing realistic magnetospheric configurations dur-
ing specific events. To solve this problem, a first principle calculation of magnetospheric equilibrium with prescribed
initial and boundary conditions can be utilized to study the specific magnetic field configurations during the growth
phase as the quasistatic equilibrium is valid then (Voigt and Wolf, 1988). In the equilibrium, the magnetic field satis-
fies (approximate) force balance with plasma pressure.Cheng(1995);Zaharia et al.(2004);Zaharia (2008) solved
the 3 dimensional (3D) plasma equilibrium problem by solving the single-fluid force balance equationJ×B = ▽·P in
terms of Euler potentials. Their method is capable of dealing with plasma pressure anisotropy (Zaharia et al., 2004,
2006), thus is especially suitable for calculations in the near-Earth magnetosphere. In this report, we describe initial
results of the plasma and magnetic field configurations during the growth phase obtained from the 3-D force balance
equilibrium model with a particular pressure choice - namely, the input plasma pressure for the model is a nonlinear
data fit of isotropic pressure observed by the Time History of Events and Macroscale Interaction during Substorms
(THEMIS) and Geotail probes.

2. Data set and methodology

In this study, we choose isolated substorm events, which are defined here as the time interval between two consecu-
tive substorm onsets being larger than 4 hours. For plasma pressure, we use observations from GEOTAIL (1995-2005)
and THEMIS (2007-2010). We first binned the observed pressure near the equatorial plane into a 1REx1RE grid in the
X-Y plane (X from -30 to 15RE and Y from -20 to 20RE) for substorm growth phase (defined here as the 0-15 min
period before a substorm onset). It should be noted that we neglect the pressure anisotropy in the THEMIS data, and
only assume the pressure being isotropic. Using the linear correlation between magnetosphere plasma pressure and
the solar wind dynamic pressure (Pdyn), we then normalized the plasma pressure to the value corresponding toPdyn=

3 nPa. To obtain analytic spatial distributions of the normalized plasma pressure (Pobs), we fitted the pressure with a
formula with 11 parameters as below:Pf it = eb1·R[b2 + b3 · sinφ + b4 · (sinφ)2 + b5 · (cosφ)2] + Rb6[b7 + b8 · sinφ +
b9 · (sinφ)2 + b10 · (cosφ)2] + b11 By using the nonlinear least square fitting from Matlab’s Optimization Toolbox, we
obtainbι from the minimization of the difference betweenPobs andPf it . With the fitting pressure as an input to the
3-D equilibrium magnetic field model (Zaharia et al., 2004;Zaharia, 2008), we obtained the force balanced magnetic
field configuration, as well as the plasma beta and current density. Finally, we compared these quantities to those
during quiet time, the Tsyganenko 89 magnetic field model (T89), and observations. Here the quiet time pressure is
the empirical Spence-Kivelson pressure (Spence and Kivelson, 1993):

Psk = 89 · e−0.59·|R|+ 8.9 · R−1.53 where R is the radial distance to the Earth inRE.

3. Model results and comparison with observations

3.1. The pressure fitting

As shown in Figure 1, the observed equatorial pressure is larger at dusk atR < 8 RE, while the pressure is lower
at dusk atR > 8 RE. Similar asymmetries are found in the fitted model pressure. The asymmetry atR > 8 RE is
consistent with the pressure profile obtained from low altitude DMSP satellite (Wing et al., 2007). The dawn-dusk
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pressure asymmetry is likely due to asymmetries in electric and magnetic drifts. The electric drift is not dawn-dusk
symmetric. It is stronger in the post midnight sector due to weaker shielding compared with the pre-midnight sector
(because electron precipitation and the associated ionosphere conductivity is higher in the post mid-night sector), so all
ions are pushed more toward dawn as they drift earthward, resulting in relatively higher pressure in the post-midnight
sector. Closer to the Earth, increasing magnetic drift brings higher energy ions toward dusk, causing higher pressure in
the pre-midnight sector at smaller radial distance. The model pressure is highly correlated with the observed pressure
with a correlation coefficient= 0.82, indicating the model pressure can well represent the observed pressure.

3.2. Comparison of model pressure and computed plasma beta between the growth phase and quiet time

Figure 2 shows that the plasma pressure and pressure gradient decrease with increased radial distance from the
Earth. Meanwhile the pressure during the substorm growth phase is larger than during quiet time outside X∼ -
7RE and the pressure gradient is larger beyond∼-12 RE. Figure 3 shows comparisons between the growth phase
equatorial pressure on the left and the quiet timePS K on the right. Note that the empiricalPS K only depends on radial
distance, therefore the quiet time pressure is dawn-dusk symmetric. Figure 4 shows the 3D force balanced pressure
along midnight for the growth phase and quiet time from the equilibrium model. Plasma pressure decreases with the
increased distance from the Earth, and is larger in the center plasma sheet than at the lobes at the same radial distance,
which is consistent with observations. The plasma beta (βp) increases with increasing radial distance inside our model
domain. Compared with quiet time, the pressure, the pressure gradient, andβp during the growth phase are larger
and the highβp region (βp > 1) is closer to the Earth. Figure 5 shows the comparisons of the equatorial distributions
of p between the growth phase and quiet time. Compared with quiet time, the equatorial highβp region is further
earthward and has a maximum value (greater than 100) around X∼ -14RE during substorm growth phase.

3.3. Comparison of force balanced magnetic field with observation and T89

As can be seen in Figure 6, during the growth phase the equatorial magnetic field in the tail is much smaller than
both the quiet time and T89 field. The left plot of Figure 7 shows that the equatorial magnetic field at midnight during
the growth phase is almost the same with T89 model (KP=3) inside X∼ -11 RE, but is slightly smaller outside X∼
-11RE. Both the force-balanced and the T89 magnetic fields are similar to the observed field. The right plot of Figure
7 shows the dawn-dusk asymmetry of the force-balanced magnetic field in comparison with the dawn-dusk symmetric
T89 field. The dawn-dusk asymmetry in magnetic field is opposite to the pressure dawn dusk asymmetry discussed in
Section 3.1, since under force balance the equatorial magnetic field is smaller in the region of higher pressure. Figure
8 shows the 3-D magnetic field lines during substorm growth phase and quiet time. The magnetic field lines near
midnight are twisted towards dawn closer to Earth and toward dusk further away from Earth during substorm growth
phase. There is no such twist in the quiet time field lines since the quiet time pressurePS K is dawn-dusk symmetric.
Figure 9 shows that the force-balanced magnetic field value is similar to observations. There is a B minimum around
∼ -17RE, similar to the T89 model which shows a minimum B at R∼ -15RE. The existence of a minimum B in the
tail plasma sheet has been inferred from observation (Saito et al., 2010, 2011).

3.4. Current density during the growth phase and quiet time

As shown in Figure 10, the azimuthal current is strongly dawn-dusk asymmetric atR< 10RE with higher current
density near dusk, resembling a partial ring current. In the tail, the current density peaks near midnight. The complex
current geometry is also seen in data based B-field modeling, e.g., TS07D model (Tsyganenko and Sitnov, 2007;
Sitnov et al., 2008). During quiet time, the current intensity is much smaller than that during substorm growth phase.
Figure 11 shows the azimuthal current at midnight during growth phase and quiet time. During the growth phase, the
azimuthal current density is much stronger compared with that of quiet time, and its maximum value in the central
plasma sheet is at around X= -10RE to -15RE. In addition, the cross-tail current sheet becomes thinner during the
growth phase. Figure 12 shows that there are typical region-1 (R1) and region-2 (R2) field-aligned currents (FACs)
(Iijima and Potemra, 1976) during quiet time, and the intensity of the R1 FACs is much higher than the R2 FACs.
During the growth phase, both the R1 and R2 FACs intensify and the FAC system rotates∼90 degree westward. In
addition, the FACs move to lower latitude, which is typical during the growth phase.
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4. Summary and Future work

The plasma andmagnetic field structure during the substorm growth phase is the key to understanding the devel-
opment of a substorm and triggering of the substorm expansion phase. The magnetic field configuration is particularly
important since it is crucial to determining the connection between the processes occurring within the magnetosphere
and ionosphere during the substorm. In this study, by using empirical plasma pressure profiles established from
THEMIS and GEOTAIL observations during isolated substorm growth phase and a 3-D force balance magnetic field
model, we have successfully captured the main characteristics of the magnetic field configuration during substorm
growth phase. Important results from the growth phase plasma and magnetic field equilibrium are: (1) The plasma
pressure shows strong dawn-dusk asymmetry, which is consistent with low altitude DMSP satellite observations. (2)
High correlation coefficient is obtained between observed pressure and fitted model pressure. (3) The computed mag-
netic field lines are more stretched than both quiet-time and T89. Field lines are also twisted in the azimuthal direction
towards dawn closer to the Earth and towards dusk farther away from the Earth. (4) Much stronger cross-tail current
and FACs appear compared to those in quiet time. A strong dawn-dusk asymmetry is seen in the partial ring current.
The complex geometry of azimuthal current is also seen in the empirical TS07D model. Here, we binned the pressure
data according to the substorm growth phase time duration with an assumption that all substorm growth phases have
the same time duration. As we know, the strength of the growth phase depends on convection strength, i.e., the cross
polar cap potential drop (△Φpcp). However, binning the data by△Φpcp alone is not sufficient for accurately capturing
the evolution of the plasma sheet pressure during the growth phase. Because convection strength does determine the
rate of energy loading during the growth phase, it does not uniquely specify the state of energy loading, which depends
on the time history as well. Therefore, a ”loading parameter”

∫
△Φpcpdt that combines△Φpcp with the duration of the

IMF being southward is more appropriate. In the next step, we will try to normalize the loading parameter to the same
duration of the growth phase. Then we will determine the growth phase 3D equilibrium corresponding to different
strengths of this loading parameter.

References

Cheng, C. Z., Three-dimensional magnetospheric equilibrium with isotropic pressure,Geophysics Research Letters, 22, 2401–2404, doi:
10.1029/95GL02308, 1995.

Iijima, T., and T. A. Potemra, Field-aligned currents in the dayside cusp observed by Triad,Journal of Geophysics Research, 81, 5971–5979,
doi:10.1029/JA081i034p05971, 1976.

Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics,
Journal of Computational Physics, 154, 284–309, doi:10.1006/jcph.1999.6299, 1999.

Saito, M. H., L.-N. Hau, C.-C. Hung, Y.-T. Lai, and Y.-C. Chou, Spatial profile of magnetic field in the near-Earth plasma sheet prior to dipolariza-
tion by THEMIS: Feature of minimum B,Geophysics Research Letters, 37, L08106, doi:10.1029/2010GL042813, 2010.

Saito, M. H., D. Fairfield, G. Le, L.-N. Hau, V. Angelopoulos, J. P. McFadden, U. Auster, J. W. Bonnell, and D. Larson, Structure, force bal-
ance, and evolution of incompressible cross-tail current sheet thinning,Journal of Geophysical Research (Space Physics), 116, A10217, doi:
10.1029/2011JA016654, 2011.

Sanny, J., R. L. McPherron, C. T. Russell, D. N. Baker, T. I. Pulkkinen, and A. Nishida, Growth-phase thinning of the near-Earth current sheet
during the CDAW 6 substorm,Journal of Geophysics Research, 99, 5805–5816, doi:10.1029/93JA03235, 1994.

Sergeev, V., V. Angelopoulos, M. Kubyshkina, E. Donovan, X.-Z. Zhou, A. Runov, H. Singer, J. McFadden, and R. Nakamura, Substorm growth
and expansion onset as observed with ideal ground-spacecraft THEMIS coverage,Journal of Geophysical Research (Space Physics), 116,
A00I26, doi:10.1029/2010JA015689, 2011.

Sergeev, V. A., P. Tanskanen, K. Mursula, A. Korth, and R. C. Elphic, Current sheet thickness in the near-earth plasma sheet during substorm
growth phase,Journal of Geophysics Research, 95, 3819–3828, doi:10.1029/JA095iA04p03819, 1990.

Sitnov, M. I., N. A. Tsyganenko, A. Y. Ukhorskiy, and P. C. Brandt, Dynamical data-based modeling of the storm-time geomagnetic field with
enhanced spatial resolution,Journal of Geophysical Research (Space Physics), 113, A07218, doi:10.1029/2007JA013003, 2008.

Spence, H. E., and M. G. Kivelson, Contributions of the low-latitude boundary layer to the finite width magnetotail convection model, 1993.
Tsyganenko, N. A., Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause,Journal of Geophysics Research,

100, 5599–5612, doi:10.1029/94JA03193, 1995.
Tsyganenko, N. A., and M. I. Sitnov, Magnetospheric configurations from a high-resolution data-based magnetic field model,Journal of Geophys-

ical Research (Space Physics), 112, A06225, doi:10.1029/2007JA012260, 2007.
Tsyganenko, N. A., and D. P. Stern, Modeling the global magnetic field of the large-scale Birkeland current system,J. Geophys. Res., 101, 27,187–

27,198, 1996.
Voigt, G.-H., and R. A. Wolf, Quasi-static magnetospheric MHD processes and the ’ground state’ of the magnetosphere,Reviews of Geophysics,

26, 823–843, doi:10.1029/RG026i004p00823, 1988.
Wing, S., J. W. Gjerloev, and J. R. Johnson, Substorm plasma sheet ion pressure profiles,AGU Fall Meeting Abstracts, p. B2, 2007.
Zaharia, S., Improved Euler potential method for three-dimensional magnetospheric equilibrium,Journal of Geophysical Research (Space Physics),

113, A08221, doi:10.1029/2008JA013325, 2008.

4

Los Alamos Space Weather Summer School 2012 72



Zaharia, S., C. Cheng, and K. Maezawa, 3-D force-balanced magnetosphericconfigurations,Annales Geophysicae,22, 251–265, doi:
10.5194/angeo-22-251-2004, 2004.

Zaharia, S., V. K. Jordanova, M. F. Thomsen, and G. D. Reeves, Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere:
Application to a geomagnetic storm,Journal of Geophysical Research (Space Physics), 111, A11S14, doi:10.1029/2006JA011619, 2006.

5

Los Alamos Space Weather Summer School 2012 73



Figure 1: Comparison of observed pressure with model pressure.
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Figure 2: Comparison of midnight meridian pressure and pressure gradient atthe equatorial plane.
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Figure 3: Comparison of pressure at the equatorial plane.

8

Los Alamos Space Weather Summer School 2012 76



-25-20-15-10-5

-2

0

2

Midnight meridian pressure (nPa)

X (R
E
)

Z
 (

R
E
)

0.1

1

10

-25-20-15-10-5

-2

0

2

Midnight meridian pressure (nPa)

X (R
E
)

Z
 (

R
E
)

-25-20-15-10-5

-2

0

2

Midnight meridian b

X (R
E
)

Z
 (

R
E
)

10
-1

10
0

10
1

10
2

-25-20-15-10-5

-2

0

2

Midnight meridian b

X (R
E
)

Z
 (

R
E
)
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Figure 5: Comparison of plasma beta at equatorial plane during growthphase and quiet time.
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Figure 8: 3-D view of magnetic field lines during growth phase and quiet time.
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Figure 9: Comparison of B at equatorial plane with T89 and observation.

Figure 10: Comparison of azimuthal current in equatorial plane between growth phase and quiet time.
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Figure 11: Comparison of azimuthal current at midnight between growthphase and quiet time.
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